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ABSTRACT

This tutorial attempts to provide a frank, step-by-step approach to

Reed-Solomon (RS) error correction coding. RS encoding and

RS decoding both with and without erasing code symbols will be

emphasized. There is no need for this tutorial to present rigorous

proofs and extreme mathematical detail. Rather, this tutorial

presents the simple concepts of groups and fields, specifically

Galois fields, with a minimum of complexity. Before RS codes are

presented, other block codes are presented as a technical

introduction into coding. A primitive (15,9) RS coding example is

then completely developed from start to finish demonstrating the

encoding and decoding processes both with and without the soft

decision capability. This example includes many, common algorithms

necessary to perform RS coding operations. A few other examples

are included to further increase understanding. Appendices include

RS encoding and decoding hardware design considerations, matrix

encoding and decoding calculations, and a derivation of the famous

error-locator polynomial. The objective of this tutorial is to

present practical information about Reed-Solomon coding in a manner

such that people can easily understand it.
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INTRODUCTION

What is error correction? The general concept of error correction

is restricting the characteristics of source signals in such a

manner that sink signals can be processed to reduce noise effects.

What is error correction coding? Error correction coding attaches

redundancy, e.g., parity-check symbols, to the data at the system's

error correction encoder and uses that redundancy to correct

erroneous data at the error correction decoder. In other words,

error correction coding is simply restricting the characteristics

of the output signals of the system's encoder so that after the

signals have been sent to the system's decoder, the decoder will

have a very high confidence level of correctly extracting the

original source signal for the decoder's corrupted input.

What is the purpose of error correction coding? The purpose of

error correction coding might be expressed in a multitude of ways

such as (i) increasing the reliability of data communications or

data storage over a noisy channel, (2) controlling errors so

reliable reproduction of data can be obtained, (3) increasing the

overall system's signal-to-noise energy ratio (SNR), (4) reducing

noise effects within a system and/or (5) meeting the demand for

efficient, reliable, high performance, and economically practical

digital data transmission and storage systems. All of these

subjective terms can be defined for a particular application.

When we are learning a "new concept" or reviewing a concept that

was once understood, we are most often interested in simplicity.

In an effort to minimize complexity, this tutorial presents simple

examples in clear detail without the need for extensive

understanding of complicated mathematics. Once you finish this

tutorial, you will have a practical understanding of Reed-Solomon

coding.

Some of us are not aware that we all use error correction coding in

our daily personal lives. Do you remember times when you really

wanted someone to "get the message?" Suppose that you are planning

a meeting. You are talking to someone and to be sure that this

person heard you indicate the time and place, you repeat the time

and place. In order to assure yourself that the person received

your exact message, you repeated the same exact message over again.

The repetition of the message is a form of error correction

encoding; you are adding redundancy to your message. Your intent

was to reduce the chance of your listener actually hearing

different words than what you were articulating.

rAT._..._ INTENTtOflALI,,)IBI_M

3
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Here is another example: You are listening to a soft spoken,

articulate speaker in a large auditorium filled with people. You

hear this person say, "... Then we all sat up our fellahscopes and

viewed Clavius, the largest crater on the near side of our moon and

the site of the monolith .... " I did not make a typo; you heard

"...fellahscopes..." Common sense tells us that this person said

"telescopes." How? Well, we performed a decoding operation on our

received message. Since there was noise in the room, we did not

clearly hear the articulately spoken word "telescopes," but we

heard "fellahscopes." The first step in our common sense decoding

algorithm is flagging "fellahscopes" as not being a valid word; our

language system has redundancy in the sense that there exists

invalid words which are never to be used. The second step is to

come up with a list of all suspected, valid words which are very

close to "fellahscopes." Some solutions are microscope, telescope,

oscilloscope, radarscope, and horoscope. We then simply select the

closest valid word to "fellahscopes." Since this is an auditory

example, "telescopes" sounds closest to "fellahscopes." If this

was a textual (or pattern example), then "telescopes" would be

closest to "felescopes."

These everyday examples demonstrate what error correction coding is

and how it works. Adding error correction capability reduces the

chance of decoding some other message than the original message.

To add error correction capability, we append redundancy to the

message that we want to communicate, and then we transmit (or

record) it. Finally, we must be able to receive and decode it.

The Reed-Solomon (RS) codes have been finding widespread

applications ever since the 1977 Voyager's deep space

communications system. At the time of Voyager's launch, efficient

encoders existed, but accurate decoding methods were not even

available! The Jet Propulsion Laboratory (JPL) scientists and

engineers gambled that by the time Voyager II would reach Uranus in

1986, decoding algorithms and equipment would be both available and

perfected. They were correct! Voyager's communications system was

able to obtain a data rate of 21,600 bits per second from

2 billion miles away with a received signal energy i00 billion

times weaker than a common wrist watch battery!

I want a Dick Tracy audio/video, transmit/receive wristwatch! RS

codes have been an integral part of high performance, high

productivity, electronic device markets with annual sales expected

to top 17 billion American dollars by 1990. RS codes have direct

application within many communications markets and nearly all the

data storage markets. Some of the more notable markets are the

following: In the optical compact disk (CD) markets there are

(1) compact disks for high fidelity audio data (i.e., CD players

and disks), (2) compact disks for computer data (i.e., CD - read

4



only memory (CD-ROM) drives and disks), (3) compact disks

interactive with a computer to display high fidelity audio, images,

and textual data (i.e., CD-I drives and probably disks),

(4) compact disks for high fidelity video (and audio) data (i.e.,

CD-V players and probably disks), (5) compact disks for data which

also have write capability for the user (i.e., WORM drives and

probably disks where WORM represents write-once, read-many), and

(6) compact disks for data which also have multiple write and

erasure capabilities for the user (i.e., erasable optical disk

drives and probably disks). In the magnetic media markets there

are (i) magnetic tape with multiple write and erasure capabilities

for computer data storage and/or high fidelity audio (i.e., DAT

drives and tapes where DAT stands for digital audio tape) and

(2) magnetic disks with multiple write and erasure capabilities for

computer data (i.e., hard disk drives and maybe disks). In the

communications markets there are (i) communications over the

telephone systems with such applications as advanced facsimile

machines (which send and receive imaging data) and high speed

modems (which usually send and receive computer data),

(2) satellite communications with such applications as the Hubble

Space Telescope, the Mobile Satellite Terminals, and the

300 megabits per second (Mbps) return link of the Space Station

Freedom/Tracking and Data Relay Satellite System (SSF/TDRSS), and

(3) deep space communications with such applications as Voyager,

the Galileo Orbiter, the Mars Observer, and the Cassini Titan

Orbiter/Saturn Probe.

Today, many error correction coding circuits exist and are easily

available in different RS coding architectures from different

sources. There are also many single chip codec (encoder / decoder)

circuits available with and/or without symbol erasure capability.

Some of the most powerful and talked about block codes available

today are the (255,255-2t) RS codes. There are even single chip

codecs available for many of these (255,255-2t) RS codes. An

example of a commercially available single integrated circuit codec

chip is the tSl0, n=255 configurations of the (n,n-2t) RS codes.

These particular single chip codecs can operate in excess of i0

megasymbols per second or rather more than 80 Mbps! For many

applications, size, weight, and power considerations of high data

rate RS codes are quickly becoming insignificant. Due to the

availability, reliability, and performance of today's Reed-Solomon

circuits, additional markets, like high definition television

(HDTV), should also start to open up.

People are even discovering new, practical uses of Galois fields

beyond the error correction (and/or detection), data compression,

digital modulation, and cryptography arenas. Some of these arenas

are in controls and digital signal processing. For example, not

only are there binary and ternary discrete Fourier transforms

5



(DFTs), but there are also P-ary DFTs where P is a prime number.

In today's ever increasing complex and technological world,

sometimes the math does not fit into the physical system and

sometimes the physical system does not keep up with the math.

Sometimes there must be full duplex communications between the

coding engineers and the implementation engineers.

The Reed-Solomon error correction codes were introduced by Irving

S. Reed and Gustave Solomon in 1960. Their work was independent of

other similar works like the work by Bose, Chaudhuri, and

Hocquenghem (i.e., the BCH codes). Even though the RS codes are a

subgroup of the BCH codes, RS codes have pillaged and burned many

of its forbearers and peers in efficiency, practicality, and rates.

RS codes have generated many useful and widespread applications.

A lot of credit goes to Reed and Solomon.

This tutorial is organized with a conscious effort to present the

material in a clear, concise, and simple manner. A universal error

correction coding notation semi-exists. I will try to keep the

notation as standard and as clear as possible. For a list of the

notation used, please refer to the notation section.

This tutorial is organized into five chapters. The material within

the chapters and even the chapters themselves are designed to allow

skimming if the person already knows the material. Considerable

effort has been expended to make each chapter self-contained beside

the numerous cross-references linking the entire tutorial together.

I try to present the specific definitions as needed and locate them

near to the needs. In order to develop an understandable

presentation, some specific definitions of terms appear much later

within the chapter than the first usage. However, all these design

considerations allow all the important details, along with its

prerequisite details, to be presented to a beginner in a logical

(and condensed!) manner.

One of the best ways to demonstrate how something works is to

perform an example from start to finish. Throughout

chapters 3,4,5, and appendix C, a primitive (15,9) RS code with

some arbitrary inputs will be used as the main example. This

particular code was chosen because it has a code rate k/n greater

than one half and yet is still powerful enough and small enough to

demonstrate. All the encoding and decoding stages will be

demonstrated. This demonstration includes working through some of

the different algorithms available at each stage obtaining

equivalent results. Also, the case of encoding and decoding using

symbol erasure (i.e., soft decision) capability will be

demonstrated. This example starts out showing all the necessary

mathematical rigor, but as this example progresses and similar

operations are repeated, only the important results will be shown.



Since all the essential mathematical rigor will be shown at least

once, the arithmetic that is not shown is left as exercises for the

reader.

In chapter 1 we will learn how to perform Galois field (GF)

arithmetic. In the past we have learned algebra (infinite field

manipulation), calculus (summation using algebra in a different

application), complex arithmetic (two dimensional algebra), Boolean

algebra (manipulating binary elements according to rules similar to

algebra), and now finally we get to learn GF algebra (finite field

algebra using most of the standard elementary algebraic rules).

Within this chapter we will derive the GF(16) implementation needed

to work our (15,9) RS coding example.

In chapter 2 we will learn about the basics of block codes for

"coding" applications. Within this chapter we introduce some

terminology, concepts, definitions, structure, and history of error

correction codes. For truly complete and absolutely accurate

material, we should refer to authoritative texts of which some are

in the reference and recommended reading sections. This chapter

should provide a general literacy of error correction coding.

Hopefully, it reads easily for the beginner and yet is pleasing

enough for the experienced person.

In chapter 3 we will learn how to encode Reed-Solomon codes. Here

we actually work the (15,9) RS example for the encoding process.

In chapter 4 we will learn how to decode Reed-Solomon codes. Here

we actually work the (15,9) RS example for the decoding process.

In chapter 5 we will learn how to design the coding system when we

have the symbol erasure capability. Here we work this primitive

(15,9) RS example modified to show the power of erasing symbols.

In appendix A we will learn how to encode RS codes using hardware.

State tables, equations, and worked out examples help us to

understand the encoder's shift register circuit.

In appendix B we will learn how to decode RS codes using hardware.

A general discussion of some of the shortcuts and design

considerations help us start thinking of how to design a practical

decoding system.

In appendix C we will learn how to perform the RS coding operations

using matrices. Matrix calculations are probably more familiar to

us than finite field polynomial calculations. We can decode using

only matrices, but we still face the challenge of determining the

estimate of the error.
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In appendix D we will learn how to derive the ever popular

error-locator polynomial o(X). Here we should see why we often

work more with the reciprocal of a(X) [denoted as at(X) ] than a(X).

Some readers prefer details first and completed definitions second.

These readers may desire to read appendix D before they read the

chapters and the appendices. Appendix D is a very brief general

mathematical overview of RS coding.

I want to make Reed-Solomon coding easy to learn. I also want to

present enough detail so we may become and stay fairly literate in

Reed-Solomon coding. Hopefully this document has enough redundancy

in it such that people will receive a good understanding of

Reed-Solomon coding. For your information, this tutorial went

through two review cycles. Therefore, maybe it is "error free!!"

I have seriously tried to reduce the number of errors in technical

content, but I am sure some still remain. If anyone would happen

to discover any noteworthy errors within this tutorial and would

let me know, I will be appreciative.

After you have finished this tutorial, I hope you will feel that

this tutorial is helpful and useful to yourself and the people you

work with.

I wish to specifically thank the following people for their help in

developing this tutorial: Bill Lindsey who served on the second

review cycle and gave me an interested, detailed, and technically

accurate critique; Phil Hopkins for his help in teaching me the

finer points of error correction coding; and Rod Bown for his

written and spoken comments which helped me to extensively rewrite

the first chapter.

DISCLAIMER: This tutorial is NOT a directive in any form.



CHAPTER1

GALOIS FIELD ALGEBRA

Galois field (GF) algebra, sometimes referred to as ground field

(GF) algebra, is similar to high school algebra or arithmetic

except that GF algebra operates within a finite field. Take the

case of base ten, integer arithmetic. We can take the element

denoted 7, sum with the element denoted 8, and obtain the element

15. If we take some integer and either add, subtract, or multiply

it to another integer, we always result with some element in the

infinite set. However, in GF algebra it is possible to take the

element 7, sum with the element 8, and obtain the resulting element

only within a finite number of elements. In GF arithmetic the

result of this example is not 7,8, or 0. The result of this

example may well be any one of the following elements: i, 2, 3, 4,

5, 6, 9, A, B, C, D, apples, oranges, ..... , the last element in

the field. You can not assign all the results of an operation,

given all the possible inputs, any way you desire. Algebraic laws

will develop the addition and multiplication tables for us.

To learn about Galois field algebra, we must first learn the

algebraic laws governing our Galois (or finite) field. These laws

are the standard algebraic laws. These laws may have, however,

become so familiar to us, that some of us may have even forgotten

them! We got so into the habit of only being concerned with the

results that we forgot about the underlying algebraic laws which

govern the entire system; we just memorized our addition and

multiplication tables. Let us first present the basic definitions,

theorems, and properties needed to understand GF arithmetic. Most

of sections I.i and 1.2 are rewritten from Error Control Codinq:

Fundamentals and Applications by Shu Lin and Daniel J. Costello,

Jr. In section 1.3 we use the definitions previously presented in

sections i.i and 1.2 to derive the ground field GF(2). GF(2) is

the ground field of the extended Galois field GF(2 m) that we use in
most block error correction codes. In section 1.4 we derive

GF(2 m) = GF(2 4) = GF(16) from GF(2). This GF(16) is the field that

we are going to use for the (15,9) Reed-Solomon example. Some of

the mathematical structure of GF(2") is examined. This structure

includes some different field element representations and some

different field implementations of GF(2m). This section also

includes examples of adding, subtracting, multiplying, and dividing

field elements. Then the final section presents all the underlying

algebraic structure necessary to create GF(P_). GF arithmetic is

the arithmetic of coding for the RS coding world.

1.1 GROUPS

Let G be a set of elements. A binary operation * on G is a rule

that assigns to each pair of elements A and B a uniquely defined

third element C = A*B in G. When such a binary operation * is
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defined on G, we say that G is closed under *. Also, a binary

operation * on G is said to be associative if, for any A, B, and C

in G: A*(B*C) = (A*B)*C. Definition 1 defines a group.

DEFINITION I:

A set G (on which a binary operation is defined) is defined to be

a group if the following conditions are satisfied:

a. The binary operation * is associative.

Do G contains an identity element I such that, for any A in

G, A*I = I*A = A.

Co For any element A in G, there exists an inverse element
A' in G such that A*A' = A'*A = I.

A group G is said to be commutative if its binary operation * also

satisfies the following condition:

A*B = B,A, for all A and B in G.

We should also make a note of the following two theorems derived

from definition i: THEOREM 1 is that the identity element I in a

group G is unique. THEOREM 2 is that the inverse element A' of a

group element is unique.

This information should be all that we need to know about groups to

perform GF arithmetic.

1.2 FIELDS

Roughly speaking, a field is a set of elements in which we can do

addition, subtraction, multiplication, and division without leaving

the set. Addition and multiplication must satisfy the commutative,

associative, and distributive laws. Definition 2 defines a field.

DEFINITION 2:

Let F be a set of elements on which two binary operations called

addition "+" and multiplication "'" are defined. The set F

together with the two binary operations "+" and "'" is a field if

the following conditions are satisfied:

ao F is a commutative group under addition "+". The

identity element with respect to addition I_ is called

the zero element or the additive identity I_ of F and is
denoted by 0 (zero).

bo The set of non-zero elements in F is a commutative group

under multiplication "'". The identity element with

respect to multiplication I_t _ is called the unit (or

unity) element or the multiplicative identity I_t t of F

and is denoted by 1 (one).
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Co Multiplication "'" is distributive over addition "+";

that is, for any three elements A,B, and C in F:

A'(B+C) = (A "B) + (A "C) .

It follows from definition 2 that a field consists of at least two

elements, the additive identity Ia_ and the multiplicative identity

I_t t. Soon, we will show that a field of these two elements alone
does exist.

The number of elements in a field is called the order of the field.

A field with a finite number of elements is called a finite field.

In a field, the additive inverse of an element A is denoted by -A,

and the multiplicative inverse of A (provided that A_0) is denoted

by A I. Subtracting a field element B from another field element A

is defined as adding the additive inverse -B of B to A [i.e., A - B

is defined as A + (-B)]. If B is a non-zero element, dividing

A by B is defined as multiplying A by the multiplicative

inverse B "I of B (i.e., A / B is defined as A " B "I = AB'I).

We should also make a note of the following five properties of

definition 2: PROPERTY 1 is that for every element A in a field,

A'0 = 0"A = 0. PROPERTY 2 is that for any two non-zero elements

A and B in a field, A'B _ 0. PROPERTY 3 is that A'B = 0 and A_0

implies B=0. PROPERTY 4 is that for any two elements A and B in a

field, -(A'B) = (-A) "B = A'(-B). PROPERTY 5 is that for A_0,

A'B = A'C implies B=C.

It is standard practice to either indicate multiplication by its

multiplication symbol "'" or by writing the elements adjacent to

each other [i.e., A'B = (A)'(B) = (A)(B) = AB]. Throughout the

rest of this tutorial I will represent multiplication as much as

possible by the most common practice of adjacent elements.

We should now know enough about fields to develop one.

1.3 BINARY FIELD GF(2)

At this point, we should have learned enough about groups and

fields and reviewed enough of the basic algebraic laws to go ahead

and develop a finite field. To demonstrate the idea of finite

fields, we start off presenting the simplest case, modulo-2

arithmetic. We will first present the binary group over addition

and then over addition and multiplication.

1.3.1 Binary Group

Consider the set of two integers, G=(0,1}. Let us define a binary

operation, denoted as addition "+", on G as follows:
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Modulo-2 addition:

0
1

Notice that this can be implemented with a single EXCLUSIVE-OR

gate! Anyway, this binary operation is called modulo-2 addition.

Let us prove that this is a group G:

Is G closed?

YES.

PROOF:

A+B = C,for all set elements A and B with the result C

also being a set element.

0+0 ?=? 0

0+I ?=? 1

i+0 ?=? 1

I+I ?=? 0

Yes, and C=0 is also a set element.

Yes, and C=I is also a set element.

Yes, and C=I is also a set element.

Yes, and C=0 is also a set element.

Is G associative?

YES.

PROOF:

A+(B+C) = (A+B)+C, for all A, B, and C.

0+(0+0) ?=? (0+0)+0 Yes.

0+(0+I) ?=? (0+0)+i Yes.

0+(1+0) ?=? (0+1)+0 Yes.

0+(1+1) ?=? (0+1)+1 Yes.

1+(0+0) ?=? (1+0)+0 Yes.

1+(0+1) ?=? (1+0)+1 Yes.

1+(1+0) ?=? (1+1)+0 Yes.

1+(1+1) ?=? (1+1)+1 Yes.

Therefore, definition I, part a has been verified.

Does G contain an additive identity element

YES, I,_=0.
PROOF:

A+I,_ = I_+A = A, for all A.

I_?

0+0 ?=? 0+0 ?=? 0 Yes.

I+0 ?=? 0+1 ?=? 1 Yes.

Therefore, definition 1, part b has been verified.

Does G contain an additive inverse element A' for each set
element A?

YES, the additive inverse element A' for each element A is the set

element A itself.
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PROOF:

A+A t = A'+A = Ia_, for all A.

0+0 ?=? 0+0 ?=? 0 Yes.

i+I ?=? i+I ?=? 0 Yes.

Therefore, definition I, part c has been verified.

proved that this set {0,i} is a Group G=(0,1}
addition.

Therefore, we
under modulo-2

Is G commutative?

YES.

PROOF:

A+B = B+A, for all A and B.

0+0 ?=? 0+0 Yes.

0+i ?=? i+0 Yes.

I+0 ?=? 0+i Yes.

I+i ?=? i+i Yes.

Therefore, this group G={0,1) is not only a group, but also a

commutative group under modulo-2 addition.

1.3.2 Binary Field

Now, since we have modulo-2 addition "+" defined over a binary

group, let us develop a binary field. We need to define modulo-2

multiplication "'".

Consider the same set of two integers, F={0,1). Let us define

another binary operation, denoted as multiplication "'", on F as
follows:

Modulo-2 multiplication:

Notice that this operation can be implemented with a single AND

gate! Anyway, this binary operation is called modulo-2

multiplication. Let us prove that this set F={0,1} is a field

under modulo-2 addition and multiplication:

Is F a commutative group under addition?

YES, previously shown in F=G={0,1).

Is the additive identity element I._ of F called the zero element

denoted by 0?

YES, previously shown in F=G=(0,1).

Therefore, definition 2, part a has been verified.
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Are the non-zero elements a commutative group under multiplication?
YES.

PROOF:

Let G = non-zero elements of F={0,1); let G=(1).

Is G=(1) closed?

YES.

PROOF:

A'B = C, for all set elements A and B with the result

C also being a set element.

I'i 9.=._ 1 Yes, and C=I is also a set element.

Is G=(1) associative?

YES.

PROOF:

A'(B'C) = (A'B) "C, for all A, B, and C.

i'(I'i) ?=? (I'i)"i Yes.

Does G={I) contain a multiplicative identity element I_[t?

YES, I_tt=l.
PROOF:

A'I_t t = I_Lt'A = A, for all A.

I'I ?=? I'i ?=? 1 Yes.

Does G={1) contain an inverse element A' for each element A

in the set?

YES, A'=I.
PROOF:

A'A' = A''A = I_tt, for all A.

I'I ?=? 1"1 ?=? 1 Yes.

Is G={I) commutative?
YES.

PROOF:

A'B = B'A, for all A and B.

1"1 ?=? 1"1 Yes.

Is the multiplicative identity element I_t t of F called the unit

element and denoted by i?

YES, previously shown in F=G=(1).

Therefore, definition 2, part b has been verified.

So far we have shown that G-{0,1) is a commutative group under

modulo-2 addition AND G={I} is a commutative group under

multiplication. We have also shown that the additive identity

element I,_ is denoted by 0 (zero) and that the multiplicative

identity element I_ is denoted by 1 (one). To prove that F=(0,1)
is a field, we now only have to prove that multiplication is

distributive over modulo-2 addition.
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Is multiplication distributive over modulo-2 addition?

YES.

PROOF:

A'(B+C) = (A'B)+(A'C), for all A, B, and C.

0"(0+0) ?=? (0"0)+(0"0) Yes.

0"(0+I) ?=? (0"0)+(0"I) Yes.

0"(i+0) ?=? (0"i)+(0"0) Yes.

0"(I+I) ?=? (0"i)+(0"i) Yes.

I'(0+0) ?=? (I'0)+(I'0) Yes.

I'(0+I) ?=? (i'0)+(I'i) Yes.

I'(i+0) ?=? (i'i)+(I'0) Yes.

i'(i+i) ?=? (i'i)+(i'i) Yes.

Therefore, definition 2, part c has been verified.

Therefore, since definition 2 was satisfied, the set (0,I} is a

field F={0,1) of two elements under modulo-2 addition and modulo-2

multiplication. Remember, a field F consists of at least two

elements: the additive identity Ia_ and the multiplicative

identity I_t t. This modulo-2 field is the minimum field of finite
number of elements that we talked about earlier. This modulo-2

field is usually called a binary or 2-ary field and it is denoted

by GF(2). The binary field GF(2) plays a crucial role in error

correction coding theory and is widely used in digital data

transmission and storage systems.

1.4 EXTENSION FIELDS GF(2 m)

Since we now know the underlying algebraic structures to perform

GF(2) arithmetic, let us talk about extension fields. We are

interested in prime finite fields called Galois fields GF(P). In

our previous binary operation example we had the minimum number of

possible elements which comprised GF(2). Extension fields are

GF(P m) where m=2,3,4,... With the design of error correction

coding based systems, we are interested in binary operations.

Therefore, we will mainly speak of binary Galois fields GF(2) and

the extended binary Galois fields GF(2 m) from now on.

1.4.1 Primitive Polynomials p_x)

Polynomials over the binary field GF(2) are any polynomials with

binary coefficients; they are binary polynomials. Each of these

polynomials, denoted as f(X), is simply the product of its

irreducible factors, i.e., f(X) = FACTOP_'FACTORI"...'FACTOR. t" WeT_ tas .
can create an extension field by creatzng a primitive polynomzal

p(X). A primitive polynomial p(X) is defined to be an irreducible

binary polynomial of degree m which divides Xn+I for n = Pm-i = 2m-i

and which does not divide Xi+l for i<n. Once a primitive

polynomial p(X) is found, then the elements of the Galois field can
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be generated. Any primitive polynomial p(X) can construct the Pm=2"

unique elements including a 0 (zero or null) element and a 1 (one

or unity) element. A degree m polynomial f(X) over GF(2) is

defined to be irreducible over GF(2) if f(X) is not divisible by

any polynomial over GF(2) of degree greater than zero, but less

than m. Let us now test to see if the following binary polynomial

f(X) is a primitive polynomial p(X). We must show that it is both

an irreducible polynomial and also divides Xn+l appropriately.

First, let us test to see if f(X) = _+X+I is irreducible.

f(0) = 04+0+1
= (o'o'o-o)+(o+i) = (o'o)'(o'o)+(i)
= (o)-(o)+i = (o)+i
= 1

0

Therefore, (X+0)=(X-0) is not a factor (0 is not a root).

f(1) = 14+i+1
= (1"1"1"1)+(I+i)
= (1"i)"(1"i)+(o)
= (I) -(i)
= 1

0

Therefore, (X+I)=(X-I) is not a factor (i is not a root).

Since a factor of degree one does not exist for this degree four

f(X), then factors of degree three also do not exist for f(X).
This fact is shown as follows:

f(x) -- x_+x+1 ,, (x3+...) (x+...)

(X+...) is of degree one and is not a factor. Therefore, if

(X3+...) is irreducible, then it is not possible for (X3+...) of

degree three to be a factor.

Next, we should try to find a factor of degree two.

X 2 = X'X

= X'X+0X+0

= x'x+ (0+0)x+ (0"0)
= (x+o) Xx+o)
- (X+0) z

Therefore, X 2 is not a factor because (X+0) is not a factor.

X2+l -- X'X+l

= X "X+0X+I

- X'X+ (I+i) X+ (I "i)

= (x+1) (x+1)
= (X+l) z
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Therefore, (X2+I) is not a factor because (X+l) is not a factor.

X2+X = X'X+X

= X "X+IX+0

= x'x+ (0+l)X+ (0 -I)
= (x+0) (x+1)

Therefore, (X2+X) is not a factor because (X+O) and (X+I) are not
factors.

Now we need to determine if X2+X+l is a factor of f(X) = X4+X+l.

Is X2+X+I a factor of f(X) = _+X+I?

1

X z + X + Xz+X+l

X2 + X + 1 I x4 + X + 1
X 4 + X 3 + X 2

X 3 + X z + X

X 3 + X 2 + X

Remember in GF(2) arithmetic, the additive identity of an element

is that element itself. Therefore, subtraction in GF(2) is

equivalent to addition in GF(2)!! From the above example,

(X4) - (X4+X3+X 2) = (_) + (_+X3+X 2) = _+_+X3+X 2 = X3+X2; then bring

down the X to form X3+X2+X and so on like we usually do division.

Most handheld calculators will not help you here!

Since there is a non-zero remainder, X2+X+I is not a factor of

f(X). Since there are no other possible second degree factors to

check, there are no second degree factors which divide f(x).

Since no factors of degree less than f(x) could be found for this

binary polynomial f(X), f(X) = X4+X+I IS IRREDUCIBLE.

Since we have shown that f(X) is irreducible, we must now show that

f(X) = X4+X+I divides Xn+I - X15+I where n = Pm-i = 2"-1 = 15 and

that f(X) does not divide X'+I for i<n. This proof will show that

this irreducible polynomial f(X) is a primitive polynomial p(X).

So let's run through a few iterations. Let us start with X'+I of

order higher than f(X).
X2+X+ 1

x + _+_+_
f(x) = _ + x + _ I x5 +

_5 +

+l

X2+ X
XZ+ X+ 1

The remainder of this division is not zero and therefore f(X) does

not divide into Xs+I. So let us try the next higher value for i.
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f x) = x + x + I I

_3+X2+I

+
X6+ + 1

X 6 + x 3 + X 2

X 3 + X _ + 1

Again the remainder of the division is not zero and therefore f(X)
does not divide X6+l. In a like manner f(X) does not divide X'+I

for the remaining values of i (i=7,8,9,...,14) until i = n = 15 =

2m-l. Let's show the results of this division.

f tx) = X + x + I
X 11+Xs+X7+X 5+X3+X2+X+l

X 15 +i

X 15 +I

0

Notice there is a zero remainder; f(X) = _+X+l does divide Xn+l.

Therefore, since we have shown that this irreducible f(X) divides

xn+I and not Xi+l for i<n, THIS IRREDUCIBLE, BINARY POLYNOMIAL f(X)

IS ALSO PRIMITIVE; p(X)=X4+X+I.

1.4.2 Field Symbols ui

Since we have a primitive polynomial p(X)=_+X+l of degree m=4, we

can now generate our Galois field GF(P m) = GF(2 m) = GF(2 4) = GF(16)

from our field generator polynomial F(X)-A_+X+I; F(X) can simply be

any primitive polynomial p(X) of degree m. Since we want to

generate the GF(2_)=GF(16), we need any fourth order p(X).

To construct the field, let us take our field generator polynomial

F(X) and perform a recursive process.

Let me first refer back to GF(2). Notice that if we add the unity

symbol 1 to the highest symbol in GF(2), which just so happens to

be 1 also, we get the lowest symbol 0. It is recursive in the

sense that it wrapped around, started back over from its highest

symbol to its lowest symbol:

0= 0

0+i = 1

i+i = 0

The lowest element.

Add the unity element to the lowest element and the

result is the element I.

Add the unity element to the previous result and we

are back to the lowest element.

Now let's use this interesting fact along with a newly introduced

element, alpha a== i. a i (read as alpha-to-the-i) will denote each

individual element within our GF(16). So in order to develop our

field (or alphabet), set "the primitive element e(X)", often

denoted simply as "a", equivalent to 0X "i + 0X _'2 + ... +

IX + 0 = X. We will complete a recursive multiplication process

similar to the previous GF(2) addition example. What we will do is

keep taking consecutive powers of "the primitive element alpha"
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until the field elements start to repeat.

Because we are using the extension of GF(P)=GF(2), the first P=2

elements of GF(Pm)=GF(2 m) are the same as GF(P)=GF(2) ; i.e., the

null and unity elements in GF(2 m) are the same as the null and

unity elements of GF(2). Therefore, a .® = 0 = 0 and a ° = 1 = i.

0 = 0 --> 0 = 0

1 = 1 --> 1 = 1

Now we set a(X) = a = X to obtain the 4-tuple J3X3+J2X2+jIX+Jo for
each element (or symbol) a i of GF(16):

a = X

a 2 = a'a = X'X = X 2

a 3 = a'a z = X'X 2 = X 3

a 4 = o-a3 = X.X 3 = X4 = ??

--> a = X

--> a 2 = X 2

--> 03 = X 3

--> a4 = ??

What do we do now to change X4 into the appropriate m-tuple, i.e.,

the appropriate 4-tuple? Well, we simply take the modulo function

of the result, e.g., a 4 = a'a 3 = X'X 3 = X4 = x 4 mod F(X). One of the

ways to perform this modulo function is to set our fourth degree

F(X) to zero and obtain the 4-tuple equivalent to X4. Working this
out we obtain

F(X) = _+X+I = 0
= -X-I = (-X)+(-I) = (X)+(1) = X+I

Therefore, a 4 = a'a 3 = X'X 3 = _ = _ rood F(X) = X+l. It should be

noted that a "® = 0 = 0 rood F(X) = 0, a0 = 1 = 1 mod F(Xx) = i,
a I = a = X = X mod F(X_ = X, 02 = X 2 = X 2 mod F(X) = 2, and
a 3 X 3 X3 mod F(X) = X*. Let us continue this recursive process

by doing a little algebra.

a4 = a'o,3 = X'X 3 = X4 = X 4 rood F(X) = X+I -->

a s = a'a 4 = X(X+l) = X2+X -->

06 = 0"o s = X(XZ+X) = X3+X z -->

or

a 6 = a2.a 4 = X2(X+l) = X3+X 2

a ? = a-a 6 = X(X3+X 2) = X4+X 3 = (X+l)+X 3 -->

or

a 7 = a2.a 5 = X2(X2+X) = X4+X 3

or

o 7 = o3.a 4 = X3(X+I) = X4+X 3

a 4 = X+I

a 5 = X2+X

a6 = X3+X 2

or

o6 = X3+X2

a7 = X3+X+l

or

a 7 = X3+X+I

or

07--- X3+X+I

In the same manner the following are obtained:

a 8 = X2+I

a 9 = X3+X

a 10 = X2+X+l

a 11 = X3+X2+X

o_12 = X3+X2+X+I

a 13 = X3+X2+l

a 14 = X3+l
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Notice that the recursive process repeats itself once we create

more than the 2" unique field elements. Let's show this repetition

by examples.

a Is = aa'a 14 = X(X3+l) = X4+X = (X+l)+X = 1

<.16 = aa.aIS = X(1) = X

aalr = aa'a 16 = X(X) = X 2

etc.

__> _15 = <.0 = 1

__> <.16 = _1 = X

__> _IZ = a2 = X 2

This is our finite field made up of 2 m unique symbols generated

from F(X) using the primitive symbol alpha aa(X) = X I = X These

unique symbols are labeled as 0,l,a,aa2,...,<."'1. It should be noted

that sometimes the 0 symbol is denoted by aa"®, 1 by aao, and aa by a I.

The remaining symbols (<*2,a3, ..., aan-1) are always denoted the

standard way.

Table 1.4.2-1 summarizes the field representations so far.

TABLE 1.4.2-1. - GF(16) ELEMENTS WITH F(X)=X++X+I USING aa(X)=X

GF(16)

e_ements

Power

representation

Polynomial

reDresentatioD

0 0 0

1 1 1

aa X X

a z X z X 2

a 3 X3 X 3

<*4 X" X+l

<*5 X 5 Xz+X

<,6 X6 X3+Xz
<*7 X 7 X 3 +X+I

<.8 Xs X2 +I
a9 X 9 X3 +X

<.1o xlO X2+X+I

aa11 X 11 X3+X2+X

a 12 XlZ X3+X2+X+I

a13 X 13 X3+X 2 +I

<.14 X14 X3 +1

15= 0[<* <. =1] is oix =x =z] [ z]
16 1=[<. =_ <.3 16 I[x =x =x] [ x ]

[<.17=<.2 ] [XlT=X2 ] [ Xz ]
[ etc. ] [ etc. ] [ etc. ]

The modulo method that we are using to develop the field elements

a i can be performed directly from aa(X) mod F(X) =

(i3X3+izXZ+iIX+i0) mod F(X). The modulo function is a basic

mathematical function; A mod B is simply calculated by dividing

A by B with the result being the remainder. The field generator
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polynomial is still F(X) = X4+X+I.

0 = 0 = 0 mod F(X) = 0

1 = 1 = 1 rood F(X) = 1

o = X = X rood F(X) = X
o2 = (X) 2 = X 2 = X 2 rood F(X) = X 2

o 3 = (X) 3 = X 3 = X3 mod F(X) = X 3

o 4 = (X) 4 = X 4 = X4 rood F(X) = ??

Calculation of X4 mod F(X):

F(x) = x4 + x + I I

X+l

1 + F (X)
X 4

X_+X+I

X+ 1

o 4 = REM [i +

X + 1

F(X)

] = X + 1

Therefore,

o 4 = (X) 4 = X 4 = X 4 rood F(X) = X+I

In the same manner the following were calculated and verified:

o s = X 5 = X 5 mod F(X) = X2+X

o 6 = X 6 = X 6 rood F(X) = X3+X 2

o 7 = X 7 = X 7 mod F(X) = X3+X+I

08 = Xa = Xa rood F(X) = X2+I

09 = X 9 = X 9 rood F(X) = X3+X

01° = X 10 = X I° mod F(X) = X2+X+I

011 = X 11 = X 11 mod F(X) = X3+X2+X

012 = X 12 = X 12 mod F(X) = X3+X2+X+I

013 = X 13 = X 13 rood F(X) = X3+X2+I

o 14 = X 14 = X 14 mod F(X) = X3+I

015 = 1

016 = X

etc.

Although the first procedure is easier, we can follow either of

these procedures to obtain the same 2 m symbols in the extended

Galois field GF(2 m) (see table 1.4.2-1). We should notice that if

we followed either procedure too long, i.e., solving for more than

2" symbols, then we should find that 015 = uo = i, u 16 = 01 = a,

017 = 0 2, .... , o (i'j") = o ((i÷j")_") = o i where j is an integer and

n=2"-l. In other words, continuing this procedure for more than

2" unique symbols will only result in repeating the polynomial

representation of the symbols.

Thus, we finished developing the field of 2m unique symbols in

GF(2"). THE FIELD GENERATOR F(X)=_+X+I AND THE PRIMITIVE ELEMENT

o(X)=X WILL BE USED THROUGHOUT THE REMAINING CHAPTERS.
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1.4.3 Different Symbol _p;es_ntat_on$

The Galois field elements (or symbols) can probably be represented

in hundreds of useful and effective ways. Usually the vector

representation is the cleanest and the easiest to perform additive

calculations on. The vectors are simply constructed with the null

character 0 representing the absence of the X j at a certain j=0,1,

2,...,m-l; i.e., the GF(2 m) field elements =i = J3X3+j2X2+jIX+jo. The
unity character 1 represents the presence of the X J. It does not

matter which direction you choose to write the vectors as long as

you are consistent. For example, suppose F(X)=X4+X+I and a

primitive element X is given. Mathematicians usually prefer

writing u6 = X2+X 3 = (0011) while application engineers usually

prefer =6 = X3+X 2 = (ii00). In this tutorial, I will always be

consistent in writing the representations the way I usually do it:
=6 = X3+X 2 = (ii00).

TABLE 1.4.3-1. - EQUIVALENT ELEMENT REPRESENTATIONS

GF(16)
svmbols

Polynomial

representation

Vector

(or m-tuple)

representation

o o (oooo)
1 1 (OOOl)
= = (o010)

az az (0100)
a3 a3 (i000)

a4 =+I (0011)

=5 =z+= (0110)

a6 a3+az (II00)

=7 =3 +=+1 (I011)

=8 =2 +i (0101)

=9 a3 +a (1010)

=1o =Z+=+I (0111)

=11 a3+,,,2+= (iii0)

=12 =3+=2+=+1 (iiii)

=13 =3+=z +i (Ii01)

=14 =3 +1 (1001)

15= 0[0 = =1] [ 1] [(ooo1)]
16 1

[= ===el [ = ] [(OOLO)]
[ alT=az ] [ a z ] [ (01000]

[ etc. ] [ etc. ] [(etc.)]

So far I have presented three equivalent ways to represent a finite

field symbol. These ways are shown in table 1.4.3-1. Compare

table 1.4.2-1 with table 1.4.3-1. Since we chose the special case

of setting the primitive element =(X) equivalent to X to generate
the field, we often will represent the field elements =| in terms
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of the _J instead of the X j. We will denote the elements _i as the

symbols of GF(2m). These are common practices and they help to

simplify some of the notation in the following chapters; compare

table 1.4.3-1 with table 1.4.2-1. Because there are so many

possible representations for the one and only one GF(2 m) for each

m, many people prefer to simply denote the field elements as

symbols. A dictionary can define a symbol as an arbitrary or

conventional sign used in writing or printing which relates to a

particular field to represent operations, quantities, elements,

relations, or qualities; in other words, symbols are a part of the

notation used to represent the elements within our GF(16).

Similarly, sometimes polynomials are written in row matrix form as

a shorthand form. For example, if p(X)=I+X+_, then p(X)=[ll001].

Again, I will remain with the notation such that

p(x) = x4+x+l = [1oo11].

The exponent (or power) and vector (or m-tuple) representations are

the most popular. Multiplication by hand is easily performed using

the power representation and addition using the vector

representation. However, they are all equivalent representations.

The cyclic (shift register)_ nature of the elements in GF(2 m) is

interesting. Notice that a 5 is _4 with one left shift and _6 is

either _4 with two left shifts or a5 with one; e.g., a5 = arithmetic

shift left of (0011) = (0110). Since the most significant

binary-tuple of a6 = (ii00) is a "i", _7 is _4 plus _6 shifted left;

_7 = _4 + arithmetic shift left of _6 = (0011) + (I000) = (i011).

For details of how to work with shift register circuits (SRC),

please refer to a text or later refer to appendices A and B.

Most people say there is one and only one primitive element to

generate the one and only one GF(2") for each m. They are correct;

there is one and only one a(X), but _(X) might be X, or X 2, or X+I,

etc. TABLE 1.4.3-1 WILL BE USED THROUGHOUT THE FOLLOWING CHAPTERS

AS THE GF(16) NEEDED TO WORK OUR PRIMITIVE RS (15,9) EXAMPLE.

The standard way of generating the field elements a i is by using

_(X) = a = X as demonstrated in this section. In chapter 3 we will

discuss RS encoding and we will need to be aware that "other"

primitive elements exist other than a = a(X) = X. Section 1.4.4

demonstrates there are other primitive elements besides a(X)=X. It
also indicates that the field elements _i can be generated using

these other primitive elements which may be helpful in some

implementations. If one does not care to read the next section,

then note the comments of this paragraph and skip over to

section 1.4.5.

1.4.4 _somorDhic GF_2") Implementations

There is one and only one GF(2). There

GF(24)=GF(16). In fact, there is
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finite field GF(2 n) for each m. However, not only are there many

different representations for each finite field element (e.g.,

m-tuple representation or power representation), but there are also

many ways to implement the elements of GF(2m).

The earlier sections presented the most popular, most common, and

probably the easiest way of explaining the field generation. This

was done by setting the primitive element alpha a(X)=a to the

polynomial i3x3+i2X2+iiX+io = X; X is a primitive element of GF(16)

using F(X)=X'+X+I. By generating the field, i.e., generating the

Pa=-2" unique symbols, the process assigned particular patterns of

l's and O's (see the vector representation) to each of the GF(16)

symbols; the process generated one particular implementation of the

one and only GF(16). Now in this section, I want to communicate

that different implementations are often preferred when we try to

apply the field into physical systems and/or into computational

systems.

All the possible primitive elements of the one and only one GF(16)

using F(X)=X4+X+I are X, X 2, X+I, X3+X+I, X2+I, X3+X2+X, X3+X2+l, and

X3+I. When a primitive polynomial is used as the field generator,

primitive elements are the prime (or relatively prime) powers of

the primitive element a(X)=X to one less than the size of the

field. In other words, refer to table 1.4.2-1 and notice that a3,

a 5, a 6, a 9, a I°, and a 12 are not primitive elements because

3,5,6,9,10, and 12 are not relatively prime to

q-1 = 2"-1 = 15 = 3"5; a(X)=X, a(X)=X 2, a(X)=X+I, a(X)=X3+X+I,

a(X)=X2+l, a(X)=X3+X2+X, a(X)=X3+X2+l, and a(X)=X3+l are all

primitive elements because 2,4,7,8,11,13, and 14 (from a 2, a_ a 7,

a a, a 11, a 13, and a 14 of table 1.4.2-1) are relatively prime to

q-i = 15 = 3"5. It should be noted that all the non-zero,

non-unity elements of the GF(4), the GF(8), the GF(32), the

GF(128), and some of the other higher degree GF(2")'s are primitive

elements because the (q-l)'s are primitive, i.e., 3,7,31,127, etc.

are prime numbers.

Now, let me work an example of a GF(16) implementation different

than what is shown in table 1.4.2-1 (and table 1.4.3-1). For

learning purposes, let us use the same F(X) as used to generate our

field in table 1.4.2-1, but this time let us use

a(X) = i.X3+i_X2+iIX+i, - X 2 instead of a(X) = i3X3+i2X2+iIX+i0 = X.

All right, set a(X) "- X 2 and develop an implementa£ion different

than when a(X) = X I = X.

O= 0

1 = 1

Now we set a(X)=X 2 to obtain the 4-tuple j3X3+j2XZ+jIX+J0:

a = X 2

= X 2 mod F(X)
= X 2
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a 2 = (X'(_ = X2"X 2

= _ rood F(X)

= X+I

a3 = a'a 2 = X2(x+l)

(X3+X 2) rood F(X)
(X3 rood F(X)) + (X2 rood F(X))
X3+X 2

a4 = a'a 3 = X2(x3+x 2)

(Xs+X 4) rood F(X)

(X5 mod F(X)) +

= (x2+x) + (x+l)
X2+I

(X4 rood F(X))

a5 = a.a 4 = X2(X2+l)
(_+X 2) rood F(X)

(X4 rood F(X)) +
(X+l) + (x2)
X2+X+I

(X2 rood F(X))

a6 = a'a s = X2(x2+x+l)

(X4+X3+X 2) mod F(X)
(X4 mod F(X)) + (X3 rood F(X))

- (x+1) + (x_) + (x2)
= X3+Xz+X+I

+ (X2 mod F(X))

_7 = c, "O_6 = X2(X3+X2+X+l)
(Xs+X_+X3+X 2) rood F (X)

XSmod F(X) + X4 rood F(X) + X3 rood F(X) + X2 rood F(X)
(xZ+x) + (x+i) + (x3) + (x2)
X3+ I

We can start to get an intuitive feeling that even though there are

many implementations playing around with the structure of the
field, there is one and only one GF(2") for each m. Completing the

procedure for the remaining elements, we get the following

remaining implementation:

a,8 = X
_9 =. X 3

010 = X2+X

o_11 = X3+X+l

alZ = X3+X
a13 = x3+xZ+x
O_14 = X3+X2+l

015 = 1

These results are listed in table 1.4.4-i. Notice that the field
elements _i within table 1.4.4-1 have a different implementation

(or representation) than the field elements _' within
table 1.4.2-i. Even though there are many possible implementations

of GF(16), mathematically there is one and only one GF(16). We
should notice that when we do NOT use _(X)=X as our primitive
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element, we will not develop a table similar to table 1.4.3-1,

i.e., we will NOT develop =' = jm.1=''I + jm.2_ "'2 + ... + 91= + J0
representations, but we can develop i = Jm.lXml + Jm.2Xm-2 +

• "" + Jl X + J0 representations.

TABLE 1.4.4-1. - GF(16) ELEMENTS WITH F(X)=X4+X+I USING =(X)=X 2

GF(16)

symbols

Polynomial

representation

Vector

(or m-tuple)

representation

o o (oooo)
1 1 (oooi)
= x2 (OLOO)
=2 X+I (0011)

=3 X3+X 2 (Ii00 )

=4 X 2 +i (0101)

a s X2+X+ 1 (0111 )

=6 X3+xZ+x+ 1 (Iiii )

=7 X 3 +i (i001)

=8 X (0010)

=9 X 3 (1000)

=10 xZ+x (0110)

=11 X 3 +X+l (I011)

=_z x 3 +x (1OLO)
=13 X3+xZ+x (1110 )

a 14 X3+X z +I (Ii01)

[=_5==°=1] [ 1] [ (ooo1) ]
[=,6==_==] [ x z ] [ (OLOO) ]
[=,?==z ] [ x+z] [ (oo11) ]
[ etc. ] [ etc. ] [(etc.)]

Not only do we have different primitive elements to cause

isomorphic implementations, but we also have a minimum of two

primitive polynomials for any GF(2"), i.e., a primitive polynomial

p(X) and it's reciprocal Pr(X) where Pr(X) = X_p(X'I).

We keep talking about primitive polynomials, but did you know that

we do not even need to use a p(X) to generate the GF(2m)? For

example, we could generate the one and only GF(16) using the

irreducible, but non-primitive polynomial F(X) =X4+X3+xZ+x+I and a

primitive element a(X) = X+I. However, one of the reasons we

usually use primitive polynomials is that u(X)=X will always be a

primitive element of any primitive polynomial p(X).

26



Some implementations consist of generating the field using one of

the previous implementations and then biasing the elements, e.g.,

generate the field and then to obtain the implementation of how the
i " " whereI' s and 0 's are assigned to each element, set _new = GJ_o[d I

i = --_,0,i,2,...,2m--2 and j is an integer.

Besides all these implementations there are many more. We used a

polynomial base, i.e., consecutive powers of the primitive element.

There are other possible bases which are useful in computations

and/or physical system implementations.

It should be noted that most people prefer to just say there are

many different representations for each unique GF(2 m) for each m.

Simply try to use a standard representation which makes the most

sense to you, but remember your system implementation.

Overall, there is one and only one GF(2 m) for each m. There are

many implementations for each GF(2m). Some implementations are

easier to understand, some are more useful in computational

implementations, while some are more useful in physical system

implementations. FROM THIS POINT ON, REFER ONLY TO THE MOST COMMON

IMPLEMENTATION OF GF(16) FOUND IN TABLE 1.4.3-1.

1.4.5 Addition and Subtraction Within GF(2 m)

Addition in the extended Galois field GF(2 m) can be performed by

one of two methods. The most common method is by exclusive-oring

the elements' vector representations position by position. This is

simply performing modulo-2 addition; we are not using carry

arithmetic. The least common method is by adding their polynomial

representations together. It is interesting to realize that these

two methods are equivalent! For example as+_ s = (a2+l)+(a2+a) =

a+l = a 4 is equivalent to a8 XOR _5 = (0101) XOR (0110) =

(0011) = a 4. Remember that subtraction and addition are equivalent

in GF(2 m) arithmetic (i.e., as+_ s = (a2+l)+(a2+a) = (a2+a2)+a+l =

(0)+a+l = a+l = a 4 is equivalent to a 8 XOR a s = (0101) XOR (0110) =

(<0 XOR 0><I XOR I><0 XOR I><I XOR 0>) = (<0+0><I+i><0+i><i+0>) =

(oo11) = a4).

Using the vector addition method:

a 4 = 0011

a 8 = 0101

a 4 XOR :8 = 0110 = a S
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Using the polynomial addition method:

_4 + _8 = (_+I) + (_Z+l)
= _ + _2

= _5

_8 + _4 = (aZ+l) + (a+l)
= _2 + _

= _5

Since subtraction is identical to addition:

Q4 + Q8 = a4 _ Q8

= _a 4 + a 8

= _a4 _ Q8

G8 + =4 = G8 _ =4

= _a 8 + =4

= _=8 _ =4

Therefore, G8 + =5 = =5 + =8 = =4

a 8 + G4 = a4 + a8 = =5

_5 + _4 = a4 + _5 = Q8

TABLE 1.4.5-1. - ADDITION/SUBTRACTION TABLE USED IN GF(2 4)

0

1 0 =4 =8 =14 ¢ =,o =13 =9 =z =7 =5 =12 =11 _ i=3
= 0 a5 =9 1 _Z _11 =14 =10 _5 _8 _6 _13 _11 _T

_Z 0 =6 a10 a a5 =1z 1 _11 =4 _9 _z =14 _13

g5 O aZ _it aZ a4 a15 a alZ a_ at0 aa 1

a4 0 _8 _11 _5 a5 al_ aZ a15 a6 all a9

=5 0 a9 =13 a4 =6 1 a3 _14 =Z =1Z

a6 0 alO a14 a5 az a a4 1 _a

az 0 a11 1 a6 aS _z a)

_9=B Q _1Z = =7 a 9 a3 a6O a 15 az a B a lo a 4

_10 0 a 1_ a 5 a 9 a 11

_ 0 _ a _ a _°
_12 =5

_l& q =Z0

To save time throughout the remainder of this tutorial,

addition/subtraction tables have been developed. Since

ai+aj = aJ+ai, only half of the following tables have been filled in

an effort to be easier on the eye and thus speed the calculations.

I suggest that either table 1.4.5-1 or its more condensed version,

table 1.4.5-2, be copied and used as a bookmark. Table 1.4.5-2 is

condensed from table 1.4.5-2 by denoting 0 as -_, 1 as 0, a as 1,

a 2 as 2, ..., a 1_ as 14.
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TABLE 1.4.5-2. - GF(16) ADDITION/SUBTRACTION TABLE USED

--00

0 -_

1

2

3

4

5

6

7

8

9

I0

ii

12

13

14

4 8 14

-_ 5

--00

1 I0 13 9 2 7 5 12 ii 6 3

9 0 2 II 14 I0 3 8 6 13 12 7

6 I0 1 3 12 0 ii 4 9 7 14 13

-_ 7 ii 2 4 13 1 12 5 I0 8 0

-_ 8 12 3 5 14 2 13 6 ii 9

-_ 9 13 4 6 0 3 14 7 12

-_ I0 14 5 7 1

-_ ii 0 6 8

-_ 12 1 7

-_ 13 2

-_ 14

--00

4 0 8

2 5 1

9 3 6

8 l0 4

3 9 ii

0 4 i0

-_ 1 5

-_ 2

--00

1.4.6 Multiplication and Division Within GF(2 m)

As in the case of addition and subtraction in GF(2m), we also have

two methods to perform multiplication and division. The most

common method is by summing the symbols' exponents modulo 2m-I (or

modulo n) and the least common method is again the polynomial

method.

Using the exponent mod n multiplication method:

0_5_2 = O_5+2

= _7

Again using the exponent mod n multiplication method:

0_50_14 = n,5 ÷14

__--a19

____CX19 rood 15

_-- a 4

Another method of performing the modulo function for multiplication

or division is to keep multiplying or dividing by a 15, which is

unity, until we obtain a symbol within the finite field.

a5_14 _-- 0_5÷14

__ _19

= (219 rood 15

= O_19/(X 15 for Oc15 = (2"15 = (20 = i
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Using the exponent mod n division method:

= _5÷(-2)

= _3

Using the exponent mod n division method for an inverse symbol a'i:

G5/_14 = GSG-14

= G5+(-14)

= _-9

= a-9 rood15

= a 6

Or we can again use the multiply or divide by unity method:

as/a 14 = asa -14

= _5÷(-14)

= _-9

= Q-9 rood15

= _-9_15

= 56

for O 15 = 5 "15 = O_0 = I

Using the polynomial multiplication method:

aSa 2 ,_ (a2+a)a 2

= 52a2+51a2

= a(2+2)+5(1+2)

= 54+a 3

= (5+1) +53
= a3+5+i

= 57

Another example using the polynomial multiplication method:

asa14 = (e2+e) (53+i)
= 52a3+a2+n153+5

= 55+a2+a4+a

= ((zz+(_,)+52+ (5+I) +(_,
= 5+1

= 54
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Using the polynomial division method:

_5/_2 _ _5_-2

= _5(_-2_ 15)
= 0_5_ 13

= (C,2+a)(_3+a2+i)
= O_2rr3+O_20_2+O_2+O_1013+O_10_2+n,

= (a2+=) +a3+_2+a
= _3

Again using the polynomial division method:

0_5/r,14 = (_5_-14

= aS(a-,4_ 15)
= r,5_,

= (_2+_)
= _2_+_IcEI

= A,3+ n, 2

= A, 6

Multiplication is easily performed by adding the exponents modulo

n and noting that ai'_ "® = (_i)(0) = 0. A multiplication table is

left as an exercise.

1.5 DIFFERENT ALGEBRAIC STRUCTURES

In Reed-Solomon coding we are only interested in Galois field

algebra. However, it is interesting to understand the overall

picture of structure. Table 1.5-i summarizes the relationships of

all of the different algebraic structures constructed in order for

us to be able to construct the extension Galois field GF(2m).

Notice that a semigroup is a subset of a monoid which is a subset

of a group which is a subset of a communicative (or abelian) group

and on and on up to a Galois (or finite) field being a subset of an

extension field. Table 1.5-1 is edited from JPL publication 77-23,

"Review of Finite Fields: Applications to Discrete Fourier

Transforms and Reed-Solomon Coding", by Wong, Truong, Benjauthirt,

Mulhall, and Reed.

31



TABLE 1.5-1.

Alaebrsic structure

Semi group

Monoid

Group

Commutative or

abel i•n group

Ring

Commutative ring

Commutative ring

with unity element

Field

Finite fietd or

Galois field

Extension field

- RELATIONSHIPS BETWEEN ALGEBRAIC STRUCTURES

Properties

One operation, say addition "+", closed and •ssociative

Also with an •dditive identity element ledd

ALso with an additive inverse element -A

ALso commutative for addition H+II

AlSO with mnother operation, say multiplication "'., closed end •ssociative.

Also •ddition "+" end multiplication .'. are distributive.

Note: A ring is • commutative group uncler addition .+- and s semigroup under

multiplication .'..

Also conmJtative for multiplication "'"

ALso with the unity element 1 (one) for with addition "+" end

multiplication "'"

Note: A commutative ring with unity element is • commut•tive group under

• ddition "+" end • monoid under multiplication "'".

Also every non-zero element h•s e muttipticstive inverse A "1 •ndthetAA "1 -1,

where 1 is the identity (or unity) element |mutt for multiplic•tion -'-.

Note: A field is a comaut•tive group under addition -+- end its non-zero

elements form • muttipiicetive group.

Also with finite number of elements

Also with the ontypossibte finite fields OF(P m) where GF(P m) is the extension

field of GF(P), GF(P) is the finite field (or Gltois field or ground field),

P is prime, end m is •n integer

1.6 SUMMARY

This chapter should have gone into enough detail to answer most if

not all questions about Galois field algebra. It did present

enough material to be able to thoroughly proceed and work the

following (15,9) RS coding example. Hopefully, this chapter

answered all the questions from those who are being introduced into

finite field algebra and coding for the first time. The ones who

are still interested in further study of coding mathematics would

be served by reading the coding bibles or referring to some other
authoritative text.

Now we should be ready to perform operations on block codes,

especially non-binary BCH, cyclic, and linear block codes known as

Reed-Solomon codes.
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CHAPTER 2

BLOCK CODES

Before we talk Reed-Solomon (RS), it is best to first talk about

its great, great grandparents called block codes. In this chapter

we start with a general block error correction coding system with

few specifics. Then in section 2.2, we construct a little perfect

(3,1) block code introducing terminology, concepts, and some

definitions. We then proceed into the next section where some of

the codes are defined and some of the ancestry is presented. In

section 2.4 we combine a random error correcting code with a burst

error correcting code. Also, burst error correction improvement,

block code modification, and synchronization are briefly discussed.

Section 2.5 discusses the error correction and detection domains

using the analogy of zones.

2.1 BLOCK ERROR CORRECTION CODING SYSTEM

In general, coding is taking k symbols as input to an encoder

producing n output symbols. These symbols are transmitted over a

channel and the result input into a decoder. The output of the

decoder is usually the decoded version of the original k symbols.

In general, n in respect to k can be >,=,<, and/or any function of

those. When n>k, we may have a system with some n-k additional

symbols. An application of this can be to add parity-check, a form

of redundancy, to the original data for error correction and/or

detection applications. When n=k we may have a scrambling

application. When n<k, we may have a compression application. In

the RS world the word "coding" means "coding for the application of

increased communication reliability through error correction

capability with n>k."

We should also note that in coding we are not interested in the

"meaning" of the message in the sense that we can do something

earth shattering with these data. Rather, we are interested in the

sense that we can replicate at the output of the decoder what was

input to the encoder. Some data in, some corresponding data out.

Some particular garbage in, some corresponding garbage out.

In general, a block error correction encoding system is simply a

mapping of elements in an ordered set (denoted as a k-tuple) into

a unique, ordered set with more elements (denoted as a n-tuple);

the encoding process annexes redundancy to the message. The idea

behind a block, error correction decoding system is simply a

mapping of the received n-tuple into its nearest, valid n-tuple
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(which corresponds to a unique k-tuple); the decoding process

removes the redundancy to recover the original message. If the

received n-tuple is correctly mapped into the original, encoded

n-tuple, then the decoded k-tuple is guaranteed to be the original

k-tuple. The procedure is that (i) the k-tuple is mapped into the

n-tuple, (2) the n-tuple is transmitted (or recorded), (3) the

n'-tuple (which is the n-tuple added with the channel error induced

by some type of noise) is received (or played back), and (4) the

k-tuple is then hopefully decoded from the n'-tuple by a mapping

algorithm.

In the encoding process for a systematic code, the k-tuple is

mapped into the n-tuple by taking the k-tuple's symbols (synonymous

to elements) and usually appending additional symbols for the

purpose of error correction and/or detection. For a cyclic code

the additional symbols which are appended to the k-tuple are

generated by taking the location shifted k-tuple modulo the

generator.

If the error correcting capability of the code is not exceeded,

then the decoder is guaranteed to correctly decode the n'-tuple

into the k-tuple. In other words, in a noisy communication channel

it is SOMETIMES possible to correct ALL the errors which occurred!

We can sometimes guarantee that the decoder's output will be

EXACTLY what was transmitted (or recorded)!! If the error

correction capability is exceeded, then the decoder will usually do

one of two things; it will either detect that the error correction

capability was exceeded or it will decode into an incorrect set.

If the decoder decoded into an incorrect set, then a decoder error

results. If this decoder error cannot be detected, then it is an

undetectable decoder error. If the error correction capability was

sensed as exceeded, then the decoder might be designed to send an

automatic repeat request (ARQ) signal and/or pass the noisy

n-tuple, denoted n'-tuple, through the system. Also, if the code

is systematic, we can at least recover the noisy message, denoted

k'-tuple, from the n'-tuple. For many applications, passing the

n'-tuple through the system is not desirable, e.g., possible

privacy concerns.

2.2 A PERFECT (3,1) BLOCK CODE

Let me explain a block coding system in another way. Let us use an

example. Assume that we want to transmit either an "on" message or

an "off" message. This can be realized in transmitting a binary

symbol (or a digital bit; be aware that many people define "bits"

as a measurement unit of "information"). A binary symbol with a

"I" is used to indicate the "on" and a "0" to indicate the "off".
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We send either 1 or 0 out over our communication channel and

hopefully receive at our destination the same message that we had

sent. However, sometimes we don't receive the same message that we

sent because channel noise and even other noise was able to

infiltrate our system and inject errors into our message. This is

where error correction coding might come in.

Error correction coding provides us control of these errors so we

as communication or as data storage engineers can obtain "reliable

transmission (or storage) of data." Claude Shannon in 1948

demonstrated that not only by "proper" modulation and demodulation

of information, but also by "proper" encoding and decoding of

information, any arbitrary high, but non-unity, probability of

decoding the received block of data (the units are symbols) into

our original information (the units are bits) can theoretically be

realized. The real problem is to approach Shannon's limit by

designing algorithms and then applying these algorithms and theory

into practical systems.

We don't get something for nothing. We must either decrease our

information rate and/or decrease the energy associated per

transmitted symbol and/or increase our power and/or increase our

bandwidth. Often such considerations as antenna power, bandwidth,

and the modulation technique used are already cast into concrete.

So the communication system with error correction capability is

often designed at the expense of reducing our information rate and

adding a little power to operate the additional hardware. However,

often this power is negligible compared to other alternatives such

as increasing the antenna power. Also, notice that coding does

require a serial insertion into the communications channel and thus

will add to the propagation delay. However, this delay is usually

negligible compared to the other propagation delays in the system.

And then there are the size and weight requirements that need to be

addressed.

Wait one moment. Instead of keeping the symbol rate constant and

decreasing the information rate, we can increase the symbol rate

and keep the information rate constant. When I generally think of

communications systems, I usually think of them as a function of

only two parameters: signal-to-noise ratio and bandwidth. If we

compare an uncoded system with a coded system for the same

information rate (i.e., bits per second), the coded system will

have a higher symbol rate at the output of the encoder (i.e.,

symbols per second) than the uncoded system. In other words, the

coded system spreads its signal energy over more transmitted

symbols within the same bandwidth. The energy associated with each

coded symbol is less than the uncoded symbol. Therefore, the

symbol error rate of a coded system will be greater than an uncoded

system. If the decoding of an error correction code has a better
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performance than an uncoded system (i.e., the coded system having

redundancy overcomes the higher symbol error rate better than the

uncoded system with its lower symbol error rate without having

redundancy) at fairly high-to-low bit error rate regions, then we

obtain a coding gain in signal-to-noise energy. If the resultant

code has a worse performance, then it is a bad error correction

code. An error correction coding system will have worse

performance at very high bit error rates than an uncoded system.

However, in an error correction system we can fairly easily adjust

the coding gain to whatever we need for the operating regions.

In summary, error correction coding may not require any additional

antenna power or bandwidth; a coding gain can be obtained over the

same bandwidth by either decreasing the information rate or by

modulation techniques (which are usually more complicated and are

designed to spread the available signal energy over more symbols).

Error correction coding can even cause the overall power and
bandwidth considerations to be relaxed.

Referring back to our case of the "on" and "off" messages, let us

now add redundancy to the message. (Sometimes the messages are

called the data field or the information field. Be aware that

different people mean different things when they talk about

"information;" I will refer to the messages as either messages or

as data fields.) Instead of transmitting a 1 to indicate "on" and

a 0 to indicate "off," let us use more than this minimum of one

binary symbol to represent these two messages. Let us now say that

we want to use three binary symbols to represent these same two

messages; we are adding redundancy. There are eight possible

states, but we are only going to transmit two of them.

Let us develop this simple block code as an example to demonstrate

coding. Let us randomly pick say a three symbol sequence of binary

code symbols to represent "on." Let us choose [101] for "on."

Usually to construct the most efficient code, choose the

representation for "off" to be as different as possible from [101].

Let us then represent "off" as [010]; [010] is the code word for

"off." A code word pertaining to a block code is defined to have

a block length of n symbols representing (or corresponding) to the

message length of k symbols where each unique code word is unique

to each message. In this example, the code word [101] has a block

length n=3 symbols, a message length k=l symbol, and the one and

only [101] is unique to "on." The number of l's in any binary word

is its weight w. The number of positions which are different

between two words of the same length is its distance d. In this

example the weight w of the word [101] is two and the weight w of

the word [010] is one; w[101]=2 and w[010]=1. Also, the distance

d between the words [101] and [010] is three; d[101,010]=3. Notice

that they differ in three locations. Also, notice that
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d[101,010] = w[101+010] because of modulo-2 addition. In this

example d[101,010] just so happened to equal w[101] + w[010];

generally d[xxx,yyy] _ w[xxx] + w[yyy]. The minimum distance dmin

is defined to be the distance between the two closest code words.

Since we only have two code words in this example,

dm_ . = d[101,010] = d[010,101] = 3. By representing a message with

more binary symbols than is necessary to label all of the messages,

we are adding redundancy to the message. [i01] and [010] are code

words that label our messages "on" and "off" respectfully. Now

notice that all of the other possible words, denoted as non-code

words, are invalid in that they will NEVER (never say never) be

transmitted; [000], [001], [011], [i00], [ii0], and [iii] are

denoted as non-code words. However, in a noisy channel it is

likely to receive these invalid words. This is due to the noise

corrupting our original code word representing our message.

Now let us try to decode the received word in the presence of

noise. If we receive a [i01] we will assume that we transmitted

"on." If we receive a [010] we will assume that we transmitted

"off." If we receive anything else we will pick the closest match

to either [i01] or [010]. There, that is our decoding algorithm;

that is maximum likelihood decoding (MLD). A maximum likelihood

decoder (MLD) is defined as a decoder whose code word estimate is

determined by maximizing the conditional received word probability

given that a code word has been transmitted. It also assumes

additive white Gaussian noise (AWGN) and a memoryless channel. A

MLD simply decodes the received word into its closest code word

measured by its symbol distance d.

But who is to say that errors cannot change one transmitted code

word into being closer to a different code word, or even being that

different code word itself? Actually errors can, but the

probability of it doing so can be made extremely small in

comparison. The idea of receiving a non-code word which is nearest

a single code word and then proceeding to decode it to be the

message represented by that code word, is called MLD.

If we receive [101] we decode it into "on" and if [010] then "off."

Seems like a given, does it not!? It seems as if no noise was

injected into our code word. Maybe noise was injected and maybe

not; there is no way that the decoder can absolutely know. For

example: what happens if we want to communicate "on" over our

communication channel? Well, we transmit [101]. But now let's say

that noise infiltrated our system and our receiver received [010];

an error in each location just happened to occur. The decoder

takes the [010] and says that it is identical to the representation

for "off." It then proceeds to incorrectly decode the [010] into

the message "off" and pushes it down the line; our decoder seems

happy. An undetectable error has just occurred; it is called an
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undetected decoding or decoder error. The reason why we still go

ahead and use this MLD idea is that the probability of having three

errors in our received code word is much less than having two

errors, is very much less than having one error, and is very, very

much less than having no errors. Equivalently, the probability of

having no errors in our received code word is much more than having

one error, is very much more than having two errors, is very, very

much more than having three errors, and so forth. Since our

decoder only has the word it received through our noisy coding

channel at its disposal, it can figure out all the possible

combination of errors to get it to any of the code words. Using

MLD the decoder selects the combination of errors which has the

fewest number of errors necessary to get it to the nearest code

word. This pattern of errors is the MOST PROBABLE ERROR PATTERN,

but MLD does NOT guarantee it to be the ACTUAL ERROR PATTERN.

Since no one has come up with a better idea to determine the

estimate of the noise and that MLD can be proven to be optimum in

an AWGN channel, MLD is still the best method to follow. MLD can

give excellent results.

Table 2.2-1 is given to demonstrate why this simple block code

example can correct one error symbol or fewer in its block length

of three and no others. Notice that more than one error symbol

within a received word results in an improperly decoded code word.

This is because all the possible received patterns (or words) have

already been mapped into their correct code words using the MLD

principle. Since the probability of having less errors is much

greater than having more errors, the received patterns that have

the least number of errors are mapped first. We then map any

remaining patterns that have more errors until we run out of

possible received patterns to map. For our example, there are no

remaining received patterns that correspond to more than a single

error symbol.

Also notice that in table 2.2-1 ALL received words with more than

one error symbol are replicated in the received words with less

than or equal to one error symbol. Since ALL single or fewer error

symbols can be mapped correctly into its nearest code word and

since NOT ALL (in fact NONE in this example) double error symbols

can be mapped correctly into its nearest code word, this particular

code is a single error correction (t=l) code. Since this code

makes undetectable decoding errors for all error symbols greater

than t symbols, this code is perfect. There's nothing all that

great about a perfect code. In fact, a perfect code utilizing all

of its error correction capability is not necessarily a good code

in terms of communication efficiency. All the syndromes are used

for error correction capability and thus none are reserved for

error detection capability; perfect codes have no error detection

capability unless some error correction capability is forfeited.
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A code with minimum distance dmi n can be used as a t error

correcting, t d additional error detecting code if and only if

2t+td+l = dmin. If we use all the error correction capability of

this small example, i.e., t=l, then t d = dmin-2t-I = 0 because dm_n=3
as discussed earlier. If we decreased the error correction

capability of our single error correcting example by one, i.e.,

t_w = to[d-i = 0, then td,new = dmin-2tnew-i = 2; in other words this
results in a zero error correcting, double error detecting code.

When we decrease the error correction capability of a perfect code,

we usually denote the resultant code as a non-perfect code.

TABLE 2.2-1. - DECODED WORDS AS A FUNCTION OF ERROR PATTERN

Number of Error

errors word

Received word

[lOl] / [010]
transmitted

Decoded code word

[lOll / [OlO]
transmitted

o [ooo] [lOll / [OLO] [lOl] / [olo]

l [100]
z [010]
I [00l]

[ooi] / [11o]
[111] / [ooo]
[1oo] / [o11]

[lOl] / [OLO]
[1Ol] / [OlO]
[lOi] / [olo]

2 [110]
2 [011]
2 [10l]

[011] / [100]
[110] / [001]
[000] / [111]

[oio] / [iOl]
[ozo] / [Io1]
[OLO] / [lOl]

3 [lZl] [OZO] / [lOll [OLO] / [1o1]

All (n,l) block codes can be perfect if n is odd; this example is

a perfect (3,1) block code. If this example was a non-perfect

code, like most others, then the code would have some error

detecting capability without sacrificing any error correction

capability. Error detection is obtained by recognizing that some

syndromes are invalid in that they are never to be used. More on

syndromes will be presented later.

In this example, code symbols are only one digital bit (or binary

symbol) in length. Therefore, this example is a binary block error

correction code.

This particular (3,1) block code is a random error correcting code;

it can correct some bit errors distributed randomly within a bit

(or code symbol) stream. It is not a burst error correcting code;

it cannot correct bursts of errors which are random errors that
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occur very, very near to each other.

This particular (3,1) block code is not a linear block code.

Linear block codes have the property that every code word summed

with any code word is a code word. Notice that all binary based

linear block codes have at least the all-zero code word because any

code word added to itself is the all-zero code word using modulo-2

arithmetic. This (3,1) block code doesn't have the all-zero code

word and therefore is grounds enough to ostracize it from being

linear. Also notice that if we take all the code words in our

(3,1) block code and sum them all together we receive the word

[iii]. [ill] is not a code word; this is also grounds for

ostracism. Death to non-linear codes!

In this example any double or triple error pattern can decode into

its nearest code word, BUT the decoder would not be able to decode

it into the correct code word. Notice that if the decoder did try

to correct the double and triple error patterns into the original

code word that was transmitted, then the no error case and the

single error cases would not be able to decode correctly. Using

MLD we will correct all single and fewer errors. Since this

example is a perfect code, any pattern of more than t errors will

cause decoder errors. Summarizing for this perfect code example,

all errors look like either a single error or no error because the

decoder is using the MLD principle. Since all error patterns with

one or fewer errors decodes into the correct code word, we have a

single error correcting code. Since it happens to be a perfect

code, more than t errors cannot be decoded correctly or even

detected; more than t errors in a perfect code produces

undetectable decoding errors.

2.3 LINEAR BLOCK CODES

Figure 2.3-1 presents the relationships between many different

types of codes. From this diagram we can see how RS codes relate

to other error correcting codes. There are two types of error

correction codes: tree codes and block codes. Even though we can

sometimes combine them in certain ways using characteristics of the

other, we still have only two types of error correction codes.
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TREE ERROR CORRECTION CODES

I ONVOLUTIONAL CODES

BLOCK ERROR CORRECTIC_J CODES
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q-ARY BCH CODES

NON-BINARY BCH CODES

REED-SOLOHON COOES ]1

REED-SOLOHON CODES

OVER GF(2 m)

NON-PRIMITIVE,

q-ARY BCH CODES

J NON-BINARY BCH COOES

:1[ REED-SOLOHON CODES

REED-SOLOHON CODES

OVER GF(2m)

Figure 2.3-1. - General Venn diagram of error correction codes.

Reed-Solomon codes are non-binary, BCH, cyclic, linear block error
correction codes.

The major characteristics of linear block codes are a block

architecture, optional systematic structure, and all code words are

sums of code words. It has a block length of n symbols and a

message length of k symbols. If the code is systematic, then it

also has an unaltered data field of k symbols independent of the

associated parity-check field of n-k symbols.

Cyclic codes are a subset of linear block codes. They have the

same characteristics as other linear block codes, but with an

additional characteristic; every cyclic shift of a code word is

also a code word. Cyclic codes are easier to encode and decode

into systems than linear block codes. The encoding operation

(similar to the first decoding stage) can be implemented into

either a SRC or a linear sequential circuit. Also, the decoders'

implementations become more practical due to the increase in the

cyclic codes' algebraic structure.

P-ary BCH codes are a special case of q-ary BCH codes which are a

subset of cyclic codes. P-ary BCH codes' code word symbols and

code word generator polynomial g(X) coefficients are from GF(P) for

P being a prime number. The field elements and the code word

generator's roots of P-ary BCH codes are from GF(q)=GF(P m)
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for q being the order of the field and m being an integer greater

than one. They have the same characteristics as other cyclic

codes, but with an additional characteristic; P-ary BCH codes can

fairly easily be implemented into systems with any error correction

capability t of t symbols along with particular choices of the

message length k of k symbols and the block length n of n symbols.

Also, BCH codes can be either primitive or non-primitive.

Primitive BCH codes are defined as codes whose block length n is

Pa-1. Non-primitive BCH codes have a block length n other than

n=l_-l; e.g., a shortened BCH code is a non-primitive code because

it has a shorter block length n which divides 1_-1. In general,

designing encoders and decoders for multiple error correcting P-ary

BCH codes is easier than for many other cyclic codes.

Binary BCH codes are the most often used of the many P-ary BCH

codes; binary BCH codes are simply 2-ary BCH codes. The code word

symbols of binary BCH codes are binary; they are from GF(P)=GF(2).

The field elements used in binary BCH codes are non-binary; they

are from GF(q) = GF(P _) = GF(2") for q being the order (or size) of

the field and for m being an integer greater than one. Also, the

code word generator polynomial g(X) has binary (i.e., 2-ary)

coefficients from GF(P)=GF(2) and the code word generator's roots

are from GF(P_)=GF(2"). A t error correcting (t<2m'1), primitive,

binary BCH code has the following parameters:

block length:

number of parity-checks:
minimum distance:

n = 2"-1 code symbols

n-k S mt code symbols

d.i. Z 2t+1 code symbols

These codes have some inherent error detection capability without

sacrificing any of the error correction capability. If some error

correcting capability is sacrificed for an additional error

detection capability td, then the resultant t error correcting,

td additional error detecting (td is an even number), primitive,
binary BCH code would have the following parameters:

block length:

number of parity-checks:
minimum distance:

n = 2"-1 code symbols

n-k S m(t+(t_2)) code symbols

dmln k 2t+td+l code symbols

P-ARY BCH CODES ARE ACTUALLY q-ARY BCH CODES. Binary BCH codes are

actually a special case of q-ary BCH codes. Also, non-binary BCH

codes are simply all q-ary BCH codes which are not binary BCH
codes.

A t error correcting, q-aryBCH code (with the code symbols and the

generator's coefficients being from GF(q), the field elements and

the generator's roots being from GF(_), and c being an integer

greater than one) has the following parameters:
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block length:

number of parity-checks:

minimum distance:

n = qC-i code symbols

n-k S 2ct code symbols

dmin _ 2t+l code symbols

P-ary BCH codes can be derived from q-ary codes by simply setting

q=P to be a prime number and c=m to be an integer greater than one.

This means that for P-ary BCH codes, the generator's roots (and the

field elements) are from GF(qC)=GF(pC)=GF(P m) and the generator's

coefficients (and the code symbols) are from GF(q)=GF(P). For

binary BCH codes the generator's roots (and the field elements) are

from GF(qC)=GF(pC)=GF(Pm)=GF(2 m) and the generator's coefficients

(and the code symbols) are from GF(q)=GF(P)=GF(2).

Now, I would like to finally talk a little more about Reed-Solomon

codes! RS codes can be derived from q-ary codes by simply setting

q=pm to be a power of a prime number and c to be i. This means

that for RS codes the generator's roots (and the field elements)

are from GF(qC)=GF((pm)c)=GF((P_)I)=GF(P m) and the generator's

coefficients (and the code symbols) are from GF(q)=GF(pm). A

t error correcting, primitive RS code has the following parameters:

block length:

number of parity-checks:

minimum distance:

n

n-k

dmin

= q-i = l_-i code symbols

= 2t code symbols

= 2t+l code symbols

The code symbols of a binary based RS code are non-binary; they are

from GF(q)=GF(pm)=GF(2m), not GF(q)=GF(P)=GF(2). For binary based

(i.e., P=2) RS codes, the generator's roots (and the field

elements) are from GF(qC)=GF((pm)c)=GF((pm)I)=GF(pm)=GF(2 m) and the

generator's coefficients (and the code symbols) are from

GF(q)=GF(P_)=GF(2m). A binary based, t error correcting, primitive

RS code has the following parameters:

block length:

number of parity-checks:

minimum distance:

n

n-k

drain

= q-I = 2m-I code symbols

= 2t code symbols

= 2t+l code symbols

For a primitive RS code, once the extension m and the base P are

determined, then the block length n is automatically set. Then

once either the error correction capability t or the message length

k is determined for a primitive RS code, the other is respectively

set. For example, if q = 1_ = 2" = 23 _ 8 (P=2 denotes binary

based), then this can either be a (7,5) or a (7,3) or a (7,1) RS

code depending if t = i, 2, or 3 symbols respectfully.

It should be noted that RS codes have very unique and powerful

features: RS codes satisfy the Singleton bound dmi n S n-k+l because

for a RS code, dmi . = 2t+l = n-k+l. Therefore, RS codes are MDS or

synonymously called optimal. It is also worth pointing out that
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the block length n of a RS code over GF(q)=GF(P _) can be extended

to either q or q+l while still maintaining the MDS condition.

Also, a (n,k) RS code can be shortened to be a (n-l,k-l) RS code

(for i even and l<k) while maintaining the MDS condition. In other

words, some non-primitive RS codes are also MDS. Another nice RS

feature is that the designed minimum distance is exactly equivalent

to the actual minimum distance dmi,, i.e., dmi.=2t+l not dmi,_2t+l.

Typically, when RS codes are designed into a system we use binary

based (P=2) RS codes. Just like any other linear block code, RS

codes can be either systematic or non-systematic. Usually if

systematic structure is easily implemented into the system and does

not decrease the coding gain, we do it. RS codes are not only very

powerful burst error correcting codes, but can also be powerful

random error correcting codes.

2.4 SOME MORE RELATED TOPICS

There are several other areas of the system with which the error

correction system must interface. We must be concerned with

choosing the correct code or combination of codes to most

efficiently meet or exceed the engineering problems of noise and

channel capacity. We must be concerned with the implementation

architecture and where the coding circuitry ks located within the

system. We must be concerned with synchronizing to our message.

Besides these concerns and concerns which fall under these, there

may be other concerns to seriously consider. This section will

briefly address interleaving, modifying block codes, burst errors,

concatenation, and synchronization.

The error correction capability of burst error codes, concatenation

codes, and random error correcting codes can increase if

interleaving is performed. The purpose of block interleaving (in

regard to error correction coding) is to average out the bursts of

burst errors over several code words. Interleaving can be done by

simply shuffling the encoder's output (or encoders' outputs) to an

interleave depth I. Instead of transmitting one code word followed

by another, we will transmit the first symbol of the first code

word, the first symbol of the second code word, ..., the first

symbol of the Ith code word. Then we will transmit the second

symbol of the first code word, the second symbol of the second code

word, ..., the second symbol of the Ith code word. Then we will

keep repeating this until the nth symbol of the first code word, the

nth symbol of the second code word, ..., the nth symbol of the Ith

code word has been transmitted. We then repeat this process by

taking another set of I code words and interleaving them the same

way. This algorithm is the usual method of block interleaving. If

the code is systematic, then all the consecutive (n-k)I parity-
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check symbols will follow all the consecutive kI message (or data)

symbols. The decoder must perform a similar operation of

de-interleaving (or de-shuffling). Besides block interleaving some

other useful interleaving algorithms worth mentioning are

convolutional interleaving (not related to convolutional codes) and

helical interleaving. In general, interleaving is simply

efficiently shuffling the symbols around to average out the very

long burst errors over more code words.

Block codes can be modified in six ways: The block length n can be

increased by attaching additional parity-check symbols (denoted as

extending) or by attaching additional message symbols (denoted as

lengthening). The block length n can be decreased by removing

parity-check symbols (denoted as puncturing) or by removing message

symbols (denoted as shortening). The last two ways are when the

block length n does not change, but the number of code words is

increased (denoted as augmenting) or decreased (denoted as

expurgating). Modified codes are sometimes about the same level of

encoding and decoding complexity as the original, unmodified code.

There are many ways to perform these modifications. Some

modifications effect the error correction capability and some do

not. To understand more about how to specifically modify a

specific code, the reader should reference a more detailed text

than this tutorial.

Let a burst error length b be defined as the number of bits from

the first bit error in a bit stream to another bit error which is

within a particular portion of the bit stream such that there may

be some non-error bits in the burst error and such that there are

all non-error bits between consecutive burst errors. A RS code can

correct a maximum burst error length bmx of length bmx = (It-l)m+l

bits within an interleaved block system of I code words being the

block of Imn bits. If interleaving is not performed, then I=l. A

RS code can correct any combinations (or patterns) of t or fewer

errors within each code word. If interleaving is used, then a RS

code can correct most combinations (or patterns) of "It" or fewer

errors within the frame of I code words being the block of Imn

bits. RS codes are very powerful burst error correcting codes and

can also be made to be very powerful random error correcting codes.

Usually noise possesses both random characteristics and burst

characteristics. This results in random errors and burst errors

within the received (or play back) data. Since codes are better at

either burst errors or random errors, concatenation between

different codes are often performed. Usually concatenation is when

an excellent random error code is used as the inner code and an

excellent burst error code is used as the outer code.

Convolutional error correction codes are powerful random error
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correcting codes. When random errors within the channel become

more and more like burst errors, the convolutional decoder

(Viterbi, sequential, or majority logic decoders) usually generate

burst decoding errors. These convolutional, burst decoding errors

could then be corrected by using a good burst error correcting

code, such as a RS code, as the outer code. The data sequence is

that data are input to the outer code encoder, then its output is

input to the inner code encoder, then its output is transmitted (or

recorded), corrupted by noise, and then input (or played back) to

the inner code decoder, then its output is input to the outer code

decoder, and then finally its output is either the decoded message

(or data) or the decoded message and corresponding parity-check.

Often this concatenation design results in superior performance

compared to a single code having some random error and some burst

error correcting capability. However, we pay for concatenation
with a decreased overall code rate.

Cyclic block codes require synchronization words for the decoder.

With cyclic block codes we usually attach synchronization words

onto the beginning of the transmitted code words. Usually this is

done synchronously and periodically by attaching one

synchronization word to every code word to be transmitted.

However, if the code words are interleaved, then we usually attach

one sync word to every I code words. Sync words typically do not

use error correction coding, but are typically designed to a

particular channel in an optimum manner. Cyclic block codes

usually are designed with sync words not only to sync to the

non-binary symbols (if the code is one with non-binary symbols),

but also to the first symbol of the code word (or first symbol of

the I code words). However, synchronization for cyclic codes can

be established and maintained without using any sync words. These

types of designs are more complicated, require additional

processing hardware, increase the propagation delay, and are less

efficient today than using sync words. In comparing a block code

and a tree code, tree codes such as convolutional codes often do

not require sync words to acquire synchronization. Convolutional

codes have an inherent coding sync capability; most convolutional

codes are self-synchronizing codes. This coding sync is not a code

word (or block) sync, a code symbol sync, an interleaved sync, a

frame sync, a packet sync, or a header sync; it is just a sync for

the code to hopefully be able to decode the received bit stream

containing errors back into the origlnal message. So, cyclic block

codes require synchronization determined either by appending

synchronization words to code words or by a lot of additional

processing. Obtaining synchronization for cyclic codes by

additional processing and not using sync words does not allow a bit

stream to be random; cyclic codes are not self-synchronizing

because only certain types of data can be transmitted. Tree codes

require synchronization usually determined from its self-
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synchronizing structure, but they usually need more redundancy for

the same amount of coding gain compared to efficient cyclic codes.

2.5 WHITE, BLACK, AND GRAY ZONES

A perfect code only has a single white decision zone for error

correction. If the received word of a perfect code is closest to

one particular code word than any other code word AND is within a

distance of t symbols away from it (i.e., TSt), then the received

word is in the white zone. Received words are decoded using MLD.

We should understand by now that MLD DOES NOT GUARANTEE TO ALWAYS

DECODE INTO THE ACTUAL MESSAGE THAT WAS TRANSMITTED. However, it

DOES GUARANTEE to always correctly decode the actual message that

was transmitted IF TSt actual errors were injected into the code

word. If T>t actual errors occurred in a perfect code, non-erasure

system, then the decoder would make an undetectable decoding error.

Actually, it is possible to add a little error detection capability

to a perfect code while retaining most or some the error correction

capability of the code. However, doing this transforms the perfect

code into a non-perfect code. This can be done by denoting some

code words as invalid, thus not using the full t error correction

capability; this would create a black zone.

A code which is not perfect has a white zone, has a black zone, and

might have a gray zone. Reed-Solomon codes are not perfect!!! RS

codes have white, black, and gray zones. If the received word is

TSt (T S tE+t£" for erasure systems) actual errors (the units are

code symbols or just symbols) or away from its nearest single code

word, then it is in the white zone; this received word is

guaranteed to be decoded correctly. If the received word is T>t

(T > rE+rE" for erasure systems) actual errors away from its nearest

single code word AND can be correctly decoded into this code word

(this is a function of the particular code itself), then it is in

the gray zone. However, even though it is possible to correctly

decode words within a gray zone, it is not usually realized into

systems. Gray zones are not usually used because received words

within this gray zone are usually difficult to find and decode.

Therefore, almost all of the time, candidate words for the gray

zone are treated as if they are in the black zone. The last zone

is the black zone. If the received word is not in either the white

zone or the gray zone, then it is in the black zone; this received

word is not able to be decoded. However, if the received word is

in the black zone, then the received word can be flagged as T>t

(T > tE+tE" for erasure systems) errors have definitely occurred

within it; non-perfect error correction codes have some degree of

error detection while retaining their full error correction

capability. The decoder can not correct any errors in the black
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zone, but if desired, the noisy message can be extracted from a

systematic received word. This may or may not be good enough. If

passing either the received word or the noisy message from a

systematic code through the system is not desired, then it might be

desired for the system to ARQ and/or throw the received word in the

trash or to the bit bucket!

It should also be noted that a non-perfect code (with t error

symbol correction capability and some error detection capability)

can be designed into a code with less error correction, less

undetectable decoding errors, and more error detection. This is

done by shrinking the white zone and increasing the black zone.

When we decode only using the white and the black zones, we are

performing "bounded distance decoding." When we try to correctly

decode by also using the entire gray zone, we are performing

"complete decoding." Symbol erasure is NOT complete decoding.

In general, this zone idea helps us to graphically visualize the

concept of error correction coding. The white zone is typically

known as the error correction domain, the gray zone as the error

correction domain beyond the distance of t symbols (or beyond the

distance of tE+tE" symbols for an erasure system), and the black

zone as the error detection domain of an error correcting code.

2.6 SUMMARY

We got to see a super simple (3,1) block code example. It was

systematic in the sense that some portion of the code word always

contained the unaltered message, i.e., "ON" - "i" from the code

word "ON" = [010] and "OFF" = "0" from the code word "OFF" = [101].

It is systematic, is not linear, and does not have a gray or black

zone, but it is a "perfect" code!

We also have been introduced to how block error correction

generally works. We have been introduced into decoding errors,

MLD, distance and weight, random and burst errors, concatenated

codes, synchronization, error correction and/or detection zones,

and the famous BCH codes which include the Reed-Solomon codes.

Some detailed definitions which have not yet been discussed

entirely will be discussed in the following chapters.

Now, enough introductory material. The remaining chapters work

some of the many RS coding algorithms for the case of our primitive

(15,9) RS code example.
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CHAPTER 3

REED-SOLOMON ENCODING

Let's get into RS coding! There are many error correction coding

algorithms around, but we mainly want to consider very efficient

(or powerful) random and burst error correcting codes - RS codes.

RS codes are BCH codes which are a subset of cyclic block codes.

Cyclic block codes are a subset of linear block codes which are a

subset of block codes which are a subset of error correction codes

in general. Therefore, RS codes are the great, great grandchildren

of block codes (see figure 2.3-1).

Within this chapter we will start working our (15,9) RS code

example. We will be able to apply the material learned or reviewed

from chapters 1 and 2. A RS block diagram of the encoder is

presented along with the parameters and equations necessary to

construct our transmitted words. And now for the fun!

3.1 REED-SOLOMON ENCODER

Since we explained a general block coding system in chapter 2, let

us now talk about RS coding in particular. Assume the parity-check

information CK(X) is obtained from the message information M(X) by

the modulo-g(x) function.

CK(X) = xn'kM(x) mod g(X)

or CK(X) could equivalently be found as:

xn'kM(x)

= Q(X)g(X) + CK(X)

g(x)

where X "'k is the displacement shift, M(X) is the message, Q(X) is

the quotient, g(X) is the generator, and CK(X) is the parity-check.

The code word C(X) that we will transmit is comprised of the

parity-check information CK(X) appended systematically onto the

message information, C(X) = xn'kM(X) + CK(X). The X "'k purpose is to

shift the message M(X) to higher ground in order that the message

M(X) does not overlap and add to the parity-check CK(X) within the

code word C(X) = xn'kM(x) + x"'kM(x) mod g(X). This is done to

retain the systematic structure. Systematic structure is defined

as simply taking our message symbols and appending parity-check

symbols to it without changing our message symbols. This is part
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of the encoding process. The degree of g(X) is n-k and the degree

of xn'kM(x) is either 0 [if M(X)=0] or from n-k to n-i [if M(X)_0].

Notice that the X "'k factor in the parity-check CK(X) = xn'kM(x) mod

g(X) forces the modulo function for all non-zero messages M(X),

e.g., even when M(X)=I, xn'kM(X) rood g(X) = X n'k mod (xn'k+...) must

be calculated. The degree of CK(X) = xn'kM(x) rood g(X) is from 0 to

n-k-1. Therefore, since n>k, the check information CK(X) never

overlaps the message information M(X). Thus, systematic structure

is retained. The message M(X) is in the k highest locations within

the code word C(X); the parity-check CK(X) is in the n-k lowest

locations.

If we desire to use a non-systematic code for some reason, then

often we use C(X)_.=y=tmtic = g(X)M(X).

k

M(X)--/-->

k

/-->
>

1 > d

X n'k --/--> i --

v

i

n-k+1 d

g (X)--l--> e

REED-SOLOMON ENCODER

n-k

/-->

CK(X) is
the

remainder

a

d

d

-->

n

--/--> c (x)

Figure 3.1-1. - Block diagram of a Reed-Solomon encoder.

Now, enough words. Let us finally see what a RS encoder looks

like. Figure 3.1-1 presents the block diagram for this RS encoder

and table 3.1-1 presents its associated polynomials.

TABLE 3.1-i. - POLYNOMIAL DEFINITIONS OF A RS ENCODER

message (or data or information) M(X) consisting of message symbols

MI: M(X) - Mk.1xk'1 + Mk.zX k'2 + ... + MIX + _

generator (or code word generator) g(X) consisting of generator

symbols g|: g(X) = X zt + gzt.1 xzt'l + ... + gl x + go

50



TABLE 3.1-1. - Continued

parity-check CK(X) consisting of parity-check symbols CKi:

CK(X) = xn-kM(X) rood g(X)

= CKn.k.iXn'k'1 + CKn.k.2X n'k-2 + ... + CKIX + CK 0

code word C(X) consisting of code word symbols Ci:

c(x) = XnkM(X) + CK(X)
= xn'kM(X) + xn'kM(X) mod g(X)

= Mk.1X"'I + ... + M0 Xn'k + CKn.k.Ix"'k'1 + ... + C_

= Cn.1 xn'l + Cn.2 Xn'2 + ... + ClX + C0

3.2 (n,k) RS CODES

Given a single value of the Galois field extension m, i.e., GF(pm),

a set of RS codes with varying error correction capabilities, block

lengths, and rates can be constructed. The 1_ unique code symbols

are constructed from the field generator polynomial F(X) and the

primitive element a(X). The parity-check information is obtained

using the generator polynomial g(X) with roots from GF(Pm). A

(n,k) RS code is defined given values for m, n, and g(X). However,

when we get into the implementation we need to also know P (which

is almost always 2), F(X) [which is almost always a primitive

polynomial p(X)], a(X) [which is almost always X=_], and at [which

is any primitive element of GF(P a) using F(X) and is almost always

set to a I in order to simplify the notation].

Table 3.2-1 lists all the RS codes in GF(2 m) for mS4. The

bracketed (i,I) code shown in the table is presented to show that

any (k,k) code is not an error correction (and/or detection) code;

it is not adding redundancy. Notice the (3,1) RS code. I believe

this code is valid in that it can be encoded and decoded using the

standard procedures, yet it is edited from most (maybe all) coding

literature. I believe this is due to the fact that a (3,1) RS code

does not have a long enough block length to produce a substantial

decrease in error rate (or increase in SNR). A (3,1) RS code seems

to be the smallest RS code possible. It should lend itself to be

a good scholastic exercise. It can correct a maximum burst error

of one symbol within its block length of three symbols; it can

correct a maximum burst error of two digital bits (or binary

symbols) if the burst error occurred within a single symbol. It is

a single symbol correction code and can use the same field

generator as its code word generator polynomial.

From the table notice that a (n,k) RS code requires two

parity-checks per error; one is for the location within the code

word and the other is for the error value at that location. That
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is, n-k=2t.

From table 3.2-1 it should also be noted that as m increases the

number of possible RS codes increases in an exponential manner!

Thus, once the block length is determined from some fairly large m,

we can pick a code with a desirable pair of rate versus correction

capability. The rate (or code rate) r of a code is the ratio of

the number of message symbols k to the block length n; r = k/n.

Let the block correction BC of a code be the ratio of the number of

correctable symbols t to the block length n; BC = t/n. Let the

average message correction MC.vg of a code be the ratio of the

average number of correctable message symbols t, = (k/n)(t) = rt to

the number of message symbols k; MC,vg = t_k = BC. It is desirable,

but impossible, for the rate r to approach I00 percent while the

error correction capability t approaches n. Usually a rate

parameter and a coding gain parameter is of prime functional

importance.

TABLE 3.2-1. - RS CODES OVER GF(2") FOR mS4

[1] [1] [1] [0] [100.0%] [00.0%]

2 3 1 1 33.3% 33.3%

3 7 5 1 71.4% 14.3%

3 7 3 2 42.9% 28.6%

3 7 1 3 14.3% 42.9%

4 15 13 1 86.7% 6.7%

4 15 ii 2 73.3% 13.3%

4 00_000 15 000000 9 0000000 3 00000000 60.0% 0000000 20.0%

4 15 7 4 46.7% 26.7%

4 15 5 5 33.3% 33.3%

4 15 3 6 20.0% 40.0%

4 15 1 7 6.7% 46.7%

3.3 (15,9) RS PARAMETERS

A primitive RS code has the following parameters over GF(P"):

block length = n = P_-I

parity-check length = n-k = 2t

minimum distance = d.j. = 2t+l

(units are symbols)

(units are symbols)

(units are symbols)
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All right, let us select a code from table 3.2-1. Let us use the
(15,9) RS code as our example that we are going to work throughout
this tutorial. The (15,9) RS code is a classical choice for an
instructional example.

People usually compare codes in two viewpoints: The first is the
theoretically possible viewpoint and the second is the let us
implement it viewpoint. Coding engineers often compare codes by
trying to maximize channel capacity which automatically brings in
factors of high code rate, SNR, message throughput, and detectable
and undetectable decoding errors. Others are concerned with these
factors too, but still must hold a different viewpoint.
Implementation engineers often compare codes by a subjective
function of need, performance, risk, and the allocation of
resources.

Because this is a tutorial and is meant to help people understand,
the classic (15,9) RS code is chosen to be demonstrated. Let us
construct our (15,9) RS coding example with the parameters as shown
in the following table.

TABLE 3.3-1. - THE PRIMITIVE (15,9) RS EXAMPLEPARAMETERS

block length
message length

n = 15 symbols
k = 9 symbols

code rate
parity-check symbol length
minimum code distance
error correction capability
block correction capability
average message correction capability
Galois field order

r = k/n = 60%
n-k = 6 symbols

dmi. = n-k+l = 7 symbols
t = (n-k)/2 = 3 symbols

(n-k)/2n = 20%
(n-k)/2n = 20%

q = n+l = 16 symbols

This is a binary based system (i.e., P=-2) because
pm= q = 16 = (2)(2)(2)(2) = 24 for P being prime. This
determines that P=2 states per 2-ary symbol (i.e.,
2 states per binary symbol) and that the code symbol
length m is 4 binary symbols.

number of code words
number of received words

P_ = 236 > 10I° words

P_ = 2 _ > 1018 words

number of undetected decoding errors

number of error patterns

P_ = 2 _ > l0 I° words

P_ = 26o > 1018 words
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TABLE 3.3-1. - Continued

number of correctable error patterns (bounded distance decoding):

t n t

z ( )(P_-l)_ = z
i=O i i=O

n n

( )hi > ( )n t = (n!/(t!(n-t)!))n t
i t

> 1010 words

From section 1.4.3:

field generator

the primitive element

F(X) = X4+X+l
o(X) = X =

From section 3.3.1:

code word generator g(X) = X6+o10X5+o14_+O4X3+_6X2+o9X+_6

the code word generator's primitive element aG = a I = a

the first consecutive root of the code word generator FCR = I

3.3.1 Generator Polynomial q(X)

To be able to decide what parity-check information CK(X) to append

onto our message M(X) we must first determine our generator g(X)

for a primitive RS code.

- 1
g(X)is_©_w = I.Fc_(X+ (u_)i)

Where FCR is the power of the first consecutive root in g(X) and aa

is any primitive element of F(X). It should be noted that any

primitive element a ] does not have to be the same primitive element

as the one used to generate the field; i.e., a s does not need to be

aGa(X)=X=a. For our primitive (15,9) RS example, can be any one

of the following primitive elements a, a 2, a4, a 7, us , a 11, a 13, and

a 14. For our (15,9) RS example, we will select the code word

generator's roots to be consecutive powers of a_=a1=a. We will also

arbitrarily start at FCR=I. The first consecutive root in g(X) is

(a_) FcR = (al) _ = a I = a which just so happens to be the same as our

primitive element a(X)=X=a. If we let a(X) = (at')FCR, then some of

the notation burden is simplified:

g(x) = _ (x + czi) - (X + a)(x + az)...(x + az')
I-I

2t

g(X) = Z gjX j = XZt+gzt.lxZt'1+...+gIX+g0
j-0
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g (x) -- [ (x+a) (x+,,2)] [ (x+_, 3) (x+,_+)] [ (x+ _,s) (x+a 6) ]
-- [X2+ (a+n ,2) X+ry 3] [X2+ (_3+54) X+_ 7] [X2+ (tv5-i-¢_ 6) X+511 ]

= [X2+5SX+a 3 ] [XZ+a7X+a7 ] [X2+_,gX+a 11 ]

= [XA+ (aT+a s) X3+ (ar+a12+a 3) X2+ (a12+a 1°) X+_, 1° ] [X2+agX+a 11]

= (X4+a13X3+a6X2+a3X+a 1°) (X2+aQx+a 11)

= X6+ (ag+e 13) X5+ (r, ll+a;'+a6 ) X4+ (ag+l+a 3) X3+ (,-?+a12+a 1°) XZ+ (a14+54) X+a 6

= X 6 + 510X5 + 514X4 + a4X 3 + 56X 2 + 59X + a 6

Therefore, the generator polynomial g (X) = X6+_1°X5+514X4+a4X3+56X2+59X

+a6. Remember that we used 5, 52 , 53 , ..., 52t as our roots of g(X).

These roots will be used in chapter 4.

If we had wanted to, we could have constructed our generator

polynomial g(X) as also being a self-reciprocating polynomial

f(X)s.r = Xif(X'1). Self-reciprocating polynomials have equivalent

jth and i-jth coefficients. The g(X) that we are going to use is

not a f(X)s, r because 1 _ 56 , 51° _ _9, and/or 514 _ 56 . An example of

a self-reciprocal polynomial is f (X) s-r = X6+51°xS+514X4+54X3+514X2+

51°X+I. Not all f (X),.r are a valid g(X) . However, one is

guaranteed to construct a self-reciprocating generator polynomial

g(X),, r by choosing FCR = 2m'1-t = (n+l)/2-t and 5J=5(X)=5 for (n,k)

primitive RS codes. The 2t roots are the following:

O_2(m'l).t 0_2(m'1).1 2 (m'l) 0_2(m'1)÷1 2(m'1)+t.1
, • ° • , ,(_ t , " • • ,(_ "

In other words, the self-reciprocating generator polynomial g(X),, r

is

g (X)s-r = (x+ezc''1)'t)••• (x+52('I)'I)(x+52c"I))(x+_2("I)+I)""" (X+52("1>+t'1)•

The greatest advantage of using a self-reciprocating generator

polynomial is that our RS encoder and syndrome decoder require less

hardware.

Primitive RS codes are non-binary BCH codes and use the g(X) forms

as previously shown. Other codes may use a different g(X). Make

sure you are using the correct g(X) for the correct code; RS codes

require g(X)_s_¢_.

3.3.2 ¢Od_ Word PolYnomial C(X)

Now since we have determined our generator g(X), we can construct

the parity-check CK(X). Then we can append our message field M(X)

to it and thus construct our systematic code word C(X). Let us now

continue our (15, 9) RS example with say

M(X) = 0_+0XT+0_+0xS+0_+0X3+0X 2+511X+0 = 511X which represents the
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message [0000000_110] which is the binary symbol sequence "000000000

000000000000000000011100000."

C(X) = xn'kM(x) + CK(X)

= xn'kM(x) + (x"'kM(x)) rood g(X)

= (X 6) (=11X) + (X6) (a11X) mod g(X)

= (_11X7 ) + (_11X7 ) mod g(X)

The calculation of a11X7 mod g (X) where

g(X) = X6+a1°XS+a1+X4+a4X3+a6X2+agX+a6 is presented as follows:

a8X54-(Z 1°X44-(z4X3-1-_ 14X2-1-o_8X-I-_ 12

allx +_6 + qfX)
X6+al°xS+_l';x4+a4X3+a6_z+_gX+a6 [ a 11X7

a11XT+a6x6+a10X5 + _,.+=z X3+a5 xZ+aZx
a6X6+,.,lOx5+ X4+a2 X3+a5 XZ+a2 x

a6X6+O_ X5+a 5 X4+alOx3+n,12X21 X+a 12

(=1O+=)X5+(1+=5)X4+(-2+,,1O)x3+(,,5+=12)X2+(=2÷1)X+. 12 = n,8 X5+(zlOx4+a4 X3+_14X2+o_Sx+_12

CK(X) ffia11X7 rood g(X) = aSX5+al°x4+a4X3+a14X2+aSx+alZ

Just as it's difficult to place the division calculations in this

tutorial, it is sometimes difficult and nerve racking to write out

all this algebra using the standard notation. Therefore, I suggest

either writing a program to make calculations in a finite field or

using the following shorthand form as much as possible. So let us

just repeat what we have just done, but use this shorthand

notation.

The calculation of 11.7 mod g(X) where g(X) = 0.6,10.5,14.4,4.3,

6.2,9.1,6.0 is as follows:

8.5.10.4.4.3.14.2.1_.1,1;Z.O
11.1.6.0 * a(X)

0.6.10.5.14.4.4.3.6.2.9.1.6,0 111.7
11.7.6.6.10.5. 0.4. 2.3. 5.2.2.1

6.6,10.5, 0.4, 2.3, 5.2,2.1
6.6. 1.5. 5.4.10.3.12,_,0,1,12.0

(1011).5, (015).4, (2.10) .3o (5÷12).2, (210). 1,12.0 • 8.5,10.4, 4.3,14.2,8.1,12.0

Using either notation produces the same

CK(X) = 11.7 mod g(X) = 8.5,10.4,4.3,14.2,8.1,12.0.

results;

Continuing with the (15,9) RS code example:

C(X) == o11X7 + CK(X)

= a11X7 + a11X 7 rood g(X)
8 5 10 4 3 14 2 8 12= G11X7 + O X += _+= X += X +G X+G

Therefore, the code word C(X) for M(X) =a11X is
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C(X) --- <zllx7 + (x8X5+(z10X4-1-_'4X3+_14X2-1-(28X-FO_ 12.

It is possible to demonstrate that the linearity principle holds

for any RS code word; RS codes are the descendants of linear block

codes. To show this, assume M I(x) = _5X3 and M2(X ) = _11X.

Linearity is demonstrated if CI+2(X ) = CI(X) + C2(X ). Solving for

C I(x) with M I(x) = aSx3:

CI(X) = (X6) (_5X3) + (X6) (aSx 3) mod g(X)

= _SX9 + _5X9 mod g(X)

= e5X9 + e13X5+e12X4+o5X3+e13X2+e2X+e 12

C2(X ) is what we calculated earlier for M2(X ) = M(X) = e11X:

C2(X ) = _11X7 + (zSx5+c,1Ox4+o_4X3+_14X2+(xSx+(z12

Solving for CI÷2(X ) with MI+2(X ) = M I(X)+M2(X ) = aSX3+a11X:

Ci÷2(X) -- (X 6) (_5X3+_11X) + (X6) (_5X3+_11X) mod g(X)

= (_5Xg+_11X7 ) + (_5Xg+a11X7 ) mod g(X)

= _5X9+_IIx7 + _3X5+ _3X4+ _8X3+ _2X2+X

Now to see if this linearity demonstration works, we need to check

that CI+2(X ) = CI(X ) + C2(X ).

CI.2(X) _ _ C (X) + C2(X )
9 15X9.=. ( + _13X5+_ 12_+_Sx3+_13X2+a2X+_12)

+ (a11X7 + aSXS+a1°X4+a4X3+a14X2+aSX+a12)

?=? aSX 9 + a11X 7 + a3XS+ a3X4+aSX3+ a2X2+ X

.=._ _5X9+allx7 + _3X5+_3_+_8X3+_2X2+X

9 9 CI(X) + C 2(X) YES'

Therefore, since CI+2(X ) = C1(X ) + C2(X ) = aSXg+allxZ + a3XS+a3X4+aSX3

+a2X2+X in this example, the linearity principal is demonstrated.

This is due to the fact that RS codes are cyclic linear block

codes. Cyclic block codes have the characteristic that each of the

code words are cyclic shifts of others, but not all others. Also,

the sum of any two code words is another code word. Since RS codes

are both linear and cyclic, it is useful to incorporate these facts

into the hardware design (see appendices A and B).

3.4 SUMMARY

Well, we should now all be semi-experts on RS encoding! We know

macroscopically what systematic primitive RS error correction

coding is; take your message and append on some specific

parity-check to it and send it through the coding channel. Refer
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to appendix A to know how to construct the encoder using shift

registers.

And now on to Reed-Solomon decoding...
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CHAPTER4
REED-SOLOMON DECODING

Chapter 1 was about GF arithmetic, chapter 2 about block codes,

chapter 3 about RS encoding, and now we are going to decode what we

encoded in chapter 3. The decoding process is to determine our

best estimate of the channel error from a set of unique

characteristics which form an identifiable error pattern; these

characteristics are known as the syndrome components S i or

collectively known as the syndrome s(X) (or as the syndrome matrix

s). After the estimated error E(X)' is subtracted from the

received word R(X), our estimate of the transmitted code word C(X)'

is determined. We call this estimate the nearest code word C(X)'

Remember, if the error correction capability of the code is not

exceeded, the decoder always decodes to the original code

word C(X)!

Decoding processes are almost always more difficult to understand

and to implement into hardware than encoding processes. There are

several devices commercially available today which perform some of

the RS codes. However, the decoding process usually requires

efficient processing and thus usually requires shift register

circuits and/or computer-like circuits. Small, less powerful error

correcting codes are fairly easy to accommodate even at high data

rates. Larger, more powerful codes require more processing and are

a challenge to accommodate sustained high data rates. It is

sometimes tough when the decoding of high data rate data must be

performed in real time.

THE DECODING PROCESS IS A FIVE-STAGE PROCESS:

i. Calculate the syndrome components from the received word.

. Calculate the error-locator word from the syndrome

components.

o Calculate the error locations from the error-locator

numbers which are from the error-locator word.

o Calculate the error values from the syndrome components

and the error-locator numbers.

. Calculate the decoded code word from the received word,

the error locations, and the error values.

The decoding process is a five-stage process. First calculate what

is called the syndrome s(X) or equivalently the 2t syndrome
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components S i. The syndrome can be determined in either of two

methods: S i = R(u I) (=E(_I)) or s(X) = R(X) mod g(X) =

REM [R(X)/g(X)] where S i = s(_*) from I = Gi from g(X)Rs¢_, within

section 3.3.1 (or appendix D). For our classic example of the

(15,9) RS code using u(X)=X, FCR=I, and ac=_ I, the 2t syndrome

components are simply S i = R(_ i) (=E(_i)) = s(_ _) for i=l,2,...,T.

From all the S i calculate the error-locator polynomial o(X); this

can be calculated in either of two methods: the linear recursion

method or the Berlekamp's (and Massey's) Method for error-locator

polynomial a(X). From the error-locator polynomial o(X), first

calculate the error-locator numbers z i for i=l,2,...,T and then

calculate the error locations x_ for i=l,2,...,T; this can be

calculated in either of two methods: the Chien Search Method or

the Explicit Method. From the error-locator numbers z i and the

syndrome components Si, calculate the error values Yi for
i=l,2,...,T; this can also be calculated in either of two methods:

the direct method or the error evaluating polynomial method. From

the error locations x i and the error values Yi, the estimate of the

error E(X)' [or synonymously the decoded error pattern E(X)'] is

specified. Finally, the fifth stage is the determination of the

nearest code word C(X)' from R(X) and E(X)'.

Sometimes this five-stage process is thought of as three simple

steps: Step 1 is to calculate all of the syndrome components.

Step 2 is to determine the error-locator polynomial. Step 3 is to

determine the decoded error pattern from the error-locator and the

syndrome components and then proceed to correct the errors by

subtracting the decoded error pattern from the received word. If

one prefers to think of the decoding procedure as three steps, then

step 1 = stage I, step 2 = stage 2, and step 3 = stages 3,4, and 5.

Step 2 is the most difficult.

It should be noted that sometimes designers like to design a sixth

stage (or a fourth step) into the decoding process. This optional

sixth stage is calculating the syndrome of the decoded code word

C(X)' to ensure that Si-0 for all i; this guarantees that the

decoder's output is indeed a code word. If the Si_0 for all i,
then something malfunctioned; we shall not have malfunctions!

4.1 REED-SOLOMON DECODER

At the receiver, if we wanted to, we can immediately check for the

presence of errors by calculating the parity-check symbols from the

received message symbols and comparing this result with the

received parity-check symbols. If the two parity-check symbol

patterns match, then either there are zero errors in the received

word (which equates to the original code word being decoded) OR the
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error pattern was identical to a non-zero code word (which equates

to a decoded code word different than the original code word). If

errors occurred, we get into the fun of finding out where the

errors took place and what the values of the errors are. The

errors can be injected in either the message part of the code word

xn'kM(x) and/or in the parity-check part of the code word CK(X)

where C(X) = xn'kM(x) + CK(X). The symbol locations in the received

word R(X) where the errors took place are simply denoted as the

error locations x i. The error values at these symbol locations in

R(X) are denoted as the respective error values Yi"

The block diagrams of a RS decoder and the coding channel are shown

in figure 4.1-1 and its polynomials' representations are given in

table 4.1-1. The block diagram seems simple enough, but how does

the decoder determine E(X)' given only R(X)? Well, the decoder

actually has to determine the error locations xi, the error values

Yi, and then E(X)' is specified! But then how are the x i and Yi

determined? Well, we will get into that later within this chapter.

n

c (x)--/-->
n

E (X)--/-->

>

>

CODING CHANNEL

n

--/--> R(X)

n

R(X)--/-->

L
>[ calculate _>-E (X) '

REED-SOLOMON DECODER

c (x) '
D

E

M

U

X

-->

-->

k
--/--> M (X) '

n-k

--/--> CK(X) '
(opticcat)

Figure 4.1-1. - Reed-Solomon decoder block diagram.
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TABLE 4.1-1. - POLYNOMIAL DEFINITIONS OF A RS DECODER

received word R(X) consisting of received symbols Ri:

R(X) = C(X) + E(X)

= [ (Cn.I+En.I)X n'1 + (C n 2+En 2)X n'2 + ... + (CI+EI)X + (C0+E0) ]

= Rn.1 xn'1 + Rn.2Xn'2 + .'.. _" RIx +

decode error pattern E(X)' consisting of error locations x i and

error values Yi:

E(X)' = ylxl + y2x2 + ... + YtXt

decoded code word C(X)' consisting of code word symbols Ci,:

C(X)' = R(X) - E(X)' = R(X) + E(X)'

= xn'kM(x) ' + CK(X)'

= xn'kM(x) ' + x"'kM(x) ' mod g(X)

= Cn.11X n'l + Cn.21X n'2 + ... + CI'X + CoW

decoded message (or data or information) M(X)'

message symbols M i, :
'X k'2 + •. + I x + I

M(X)' = Cn.l'X k'l + Cn.21xk.2 . Cn.k+l Cn.k
= Mk.1'X k'1 + Mk.2 + ... + MI'X + _'

consisting of

decoded parity-check CK(X)' consisting of check symbols CKi,:

CK(X)' = Cn.k.1'x"'k'1 + Cn.k.z,X"'k'Z + ... + CI, x + C0,

. C%,.k.',_-k-, + C_.k.2,X,,-k-Z+ ... + C%'X + C%'

_j

To determine our best guess of what was transmitted, E(X)' is added

[equivalent to GF(2) or GF(2") subtraction] to R(X) to correct R(X)

into C(X)'. Hopefully C(X)' is C(X); in fact C(X)' is EXACTLY C(X)

if the error correction capability is not exceeded!

4.2 SYNDROMES

With M(X) = a11X and C(X) = a11X 7 + aSXS+a1°X4+a4X3+a14X2+aSx+u Iz from

section 3.3.2, let us complete the first stage of the (15,9) RS

decoding.

Assume some noise was injected into the coding (or communications)

channel and as a result some of the binary symbols (or bits) within

two code symbols were altered; errors occurred in the X8 and the X z

locations.

8 5 10 & 3 3 2 8 12Suppose R(X) = XS+allX7 + a X +o X_+a X +g__+a X+a .

Notice that the coefficients of _, part of the RS data source
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field [xn'kM(x) ], and X2, part of the RS check symbol field

[Xn'kM(X) mod g(X) ], has changed from 0 and a 14 to I and a3

respectfully. This example just so happens to show the right most

binary symbol within both of the error symbols as being flipped:

vectors (0000) and (i001) to vectors (0001) and (i000)

respectfully. REED-SOLOMON CODES NOT ONLY CORRECT SINGLE BIT

ERRORS (i.e., binary error symbols) WITHIN A CODE SYMBOL, BUT ALSO

ANY NUMBER OF BIT ERRORS WITHIN A SYMBOL! This is why we generally

speak of RS codes correcting symbols and not bits; RS codes are

burst error correcting codes including some degree of random error

correction capability. The output of the RS decoder should strip

off these errors from R(X) and result in C(X)'.

The word "syndrome" is defined in a dictionary as a group of signs

and symptoms that occur together and characterize a particular

abnormality. It is also defined as a set of concurrent things that

usually form an identifiable pattern. In the coding application

syndrome components S i are these individual characteristics that

characterize a particular error pattern (abnormality). The

syndrome s(X) is simply the accumulation of these characteristics

where Si=s(ai).

The syndrome components S i can be determined in either of two

methods as presented in sections 4.2.1 and 4.2.2.

4.2.1 Method i: Syndrome Components S i

S i = R(a x) = R((as) i) for i = FCR,FCR+I,...,2t+FCR-I and for the code

word generator primitive element a s. For our RS example, Si=R(a _)

for i=I,2,...,2t.

R(X) = XS+ocllX7 + aSx5+al°x4+a4X3+aZX2+aSX+a 12

sI = R(=)
= (=)8+ai' 'z
= n,8 +(xlla7 +G8CZ5

= 0_8 +G18 +G13

= (=8 +=3 ) + (,,13

= (CZ13 ) + (,,,Z

_ (_13+_13) + (=2+=,)

- (0 )+(I )

-- 1

+n,100_4 +O_4(Z3 +KX30_2 +0Z8_ +0_ 12

+¢_1&, +n,7 +_5 +0_9 +0_12

+,,,,z, ) + (=7 +<,5 ) + (e 9 +c,12)
)+(=, )
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S 2 = R(a 2) = 1

S3 = R(a 3) = a s

S_ = R(a 4) = 1

S5 = R(a 5) = 0

S 6 = R(a 6) = a 10

Therefore, the syndrome components are $I=$2=$4=I, S3=a 5, $5_0, and
S6=a I°. Notice that in this example, i.e., S 2 = (S 1) = 1,

S 4 = ($2)2 = 1, S6 = ($3)2 = _I0, and S5 - 0. S2i = ($I) 2 for RS codes

is not the general case; S2i = (S1)2-0ccurred because we had a

special type of an error pattern. It should also be noted that the

syndrome components are not the coefficients of the syndrome

polynomial s(X). The syndrome components are of the form Si=s(a i)
for aGfa I.

4.2.2 Method 2: Syndrome Polynomial s(X)

The syndrome components S i can also be found by first determining

the syndrome s(X) = REM [R(X)/g(X)] = R(X) mod g(X). This method

works for both systematic and non-systematic codes. Then the

syndrome components S i can be found by S! = s(a I) for

i = FCR, FCR+I,...,FCR+2t-I. For our (15,9) RS example, S i = s(a I)
for i = 1,2,...,2t. These calculations are left as an exercise!

The results of this exercise are the same as the results found in

section 4.2.1 and appendix C: $I=$2=$4-I, S3=a 5, $5=0, and S6=a I°.

The S i and the s(X) can also be calculated using matrices as later

presented in appendix C. Remember that in order to ease the hand

calculation burden, we can use either the shorthand method of

aixJ=i.j or write a program to perform the calculations.

4.3 ERROR-LOCATOR POLYNOMIAL o(X)

ar(X ) is known as the reciprocal of the error-locator polynomial

o(X) where the roots of Or(X ) yield the error-locator (or

error-location) numbers z i. a(X) is known as the error-locator

polynomial where the inverse of its roots yield the error-locator

numbers z i. The degree of either Or(X ) or a(X) determines the total

number of error symbols T which for non-erasure systems is less

than or equal to the error correction capability t. In RS coding,

understanding is often easier using Or(X ) to find the z i rather than
oCX).

The syndrome components S i are known; the error locations x i and the

error values y| are not known. The S| are related to the z i (i.e.,

also the xi) and the Yl by the following set of independent
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NON-LINEAR simultaneous equations (equation 4.3-1) called the

weighted power-sum symmetric functions.

T

Si = Yj=1 yjzj'

where i=FCR,FCR+I,...,2t+FCR-I,

and where T for non-erasure example

is the number of errors tESt.

(equation 4.3-1)

In our example, i=l,2,...,T, because FCR=I is the power of the

first consecutive generator root.

Usually there are many solutions to this previous set of NON-LINEAR

equations; these solutions are within a distance of t errors.

However, there is always only one correct solution within a

distance of t symbols; the correct solution is simply the ar(X )

polynomial representing the fewest errors (i.e., the lowest

possible value of T) occurring which satisfies equation 4.3-1.

Once Or(X ) is known, the error locations x i can be determined and

then equation 4.3-1 simplifies into a standard set of independent

LINEAR simultaneous equations. We all can then solve these LINEAR

equations for the yi!

Berlekamp came up with an efficient iterative algorithm denoted

appropriately enough, Berlekamp's iterative algorithm for finding

the error-locator polynomial a(X). If you can come up with a

better algorithm than Berlekamp's iterative algorithm to find the

solution with the fewest terms (or errors) out of a set of many

solutions growing exponentially as code length increases, you might

become a millionaire!!!

Appendix D presents more details of the link between the

error-locator polynomial and the weighted power-sum symmetric

functions.

There are two methods we can implement to solve for o(X):

Berlekamp's algorithm for a(X) presented in sections 4.3.1.1 and

4.3.1.2 and the linear recursion method for a(X) presented in

section 4.3.2.

4.3.1 Method I: Iterative Alqorithm fo; G_X)

There are two equivalent presentations of Berlekamp's algorithm:

Berlekamp's algorithm presentation for finding a(X) and the

Euclidean division algorithm presentation for finding a(X). One of

the most common ways to present Berlekamp's algorithm is in a table

format and will be denoted as Berlekamp's algorithm presentation.

Berlekamp's algorithm presentation is a little simpler to follow;

65



the Euclidean or greatest common division (GCD) presentation is a

little easier to intuitively understand. Regardless of the

presentation style, the algorithms determine the a(X) polynomial

with the least number of terms which is the single solution linked

to a set of simultaneous NON-LINEAR equations. Since there is more

than one possible solution to equation 4.3-1, we use MLD and pick

the link a r(X) with the lowest degree, a r(X) transforms

equation 4.3-i into a set of solvable LINEAR equations always

possessing a single solution. This single solution is simply the

decoded error pattern E(X)'.

4.3.1.1 Berlekamp's Algorithm Presentation

Table 4.3.1-1 presents the most common presentation in describing

the Berlekamp's iterative algorithm. Following this,

table 4.3.1.1-2 is then developed for our primitive (15,9) RS

example.

TABLE 4.3.1.1-1. - BERLEKAMP'S ITERATIVE RS ALGORITHM FOR FCR=I

-i 1 1 0 -I

0 1 SFcR=SI 0 0

.e. ... ... ...

• .e ee. .le ... ...

• .. 0.. ... ... 0..

2t o(X) .........

PROCEDURE TO FILL IN TABLE 4.3.1.1-1:

1. If dr = O, then o(_*1)(X) = o(¢)(X) and h,+1=h _.

. If dr _ 0, then find a row before the ,th row, call

it the @th row, such that @-% has the largest value

in its column before the #th row (p may be one of

several values) and _ _ 0 and then:

oc".1 (x) -- o (x) + d.d 'lXC"P o (X)
h,.1 = MAX [h_, %+,-@]
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3. In either case:

d#+ 1 = S#+ 2 + Ol(#+l)s_+ 1 + + (#+1) S
• • . Gh(#+l) #+2"h(#+1)

where 0i(_+1) are the coefficients of o(_+l)(X) = 1 +

G1(#+1) x + 02(#+1)X2 + ...+ Gh(#+l)(#+l)xh(#+l)

The following are a few choice calculations used in developing

table 4.3.1.1-2 for our primitive (15,9) RS example.

At row #=I, the value #=0:

d o = S FCR = S I = 1

p =-i

O(1)(X) = o(°)(X) + d0(d.1)'IX(°'('1))u('1)(X) = 1 + (I)(1)'1(X I) (i) = 1 + X

Continuing at row #=i with the value #=0:

h I = MAX [h0, h.1 + 0 - (-I)] = MAX [0, 0 + 0 + I] = MAX [0, i] = 1

d I = S 2 + a1(1)S I = 1 + (i)(i) = 1 + 1 = 0

At row #=2, the value #=I:

dl = 0

oZ(X) = 0 l(x) = 1 + X

h z = h I = 1

d 2 = S 3 + 012S 2 = a s + (1)(1) = _5 + 1 = _10

And so on, and so on, and so on, until o(X) is obtained:

o(X) = o2t(x) = o6(X) = I + X + (_IOx2 = a10XZ+X+l.

Note that the calculations for o (#)(X) and d# use finite field math

and the calculations for h# and #-h# use infinite field math. The
results are presented in table 4.3.1.1-2.
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TABLE 4.3.1.1-2. - EXAMPLE OF THE BERLEKAMP'S ITERATIVE ALGORITHM

-I 1 1 0 -i

0 1 SFcR=SI=I 0 0

1 I+X 0 1 0 (pick p = -i)

2 I+X a I° 1 1

3 l+X+a1°X 2 0 2 1 (pick p = 0)

4 l+X+a1°X 2 0 2 2

5 l+x+al°x 2 0 2 3

2t=6 l+X+a1°X 2 .........

Therefore, the error-locator polynomial o(X) = a1°X2+X+l. Then, oi=1

and o2=a I° are from o(X) = a1°X2+X+l = a2X2+oIX+Oo . These o i are the

coefficients to the error-locator polynomial o (X) and its

reciprocal Or(X ) . a(X) and Or(X ) are related by the following:

Or(X) = xTo(x "I) = X2(l+X'1+a10X "2) -- X 2 + X + (X10

Therefore, the error-locator polynomial reciprocal ar(X ) = X2+X+a TM

and the error-locator polynomial a(X) = a1°X2+X+l.

We have completed Berlekamp's algorithm. In the next section this

same iterative algorithm is presented in a different way; I believe

them to be the same algorithm.

4.3.1.2 Euclidean Division Algorithm Presentation

2t

Let S(X) ffi Z
i=I

SiX i'1 = S 1 + S2X + ... + S5_ + S6X5 = a10xS+xZ+a5X2+X+l

Divide X zt by S(X), then S(X) by rl, r I by r2, r2 by r3,..., until the

degree of ri < t:

Divide _ by S(X):

al°Xs+X3+o_SX2+X+ 1 I

aSX4+o_ 10X3+o_SX2+aSX

aSX +o + $(_)
X6

X6+crsx4+alo;_z+aSxZ+_s X
aSX4+nlOx3+aSX2+a5X
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X6 aSX_+a_Ox3+aSX2+aSX

= (ZSX +

s(x) s(x)

X6 = (aSx)s(x) + (aSX4+a1°X3+aSx_+aSX)

= (ql)s(x) + ( rl )

KEEP GOING!!! The degree of ri=4 > t=3.

Divide S(X) by rI:

s(x) z
= aSX + a 10 +

rI rI

S(X) = (aSX + a1°)r_ + 1

= ( q2 )rl + r2

STOP! !! The degree of r2=0 < t=3.

Put the previous results into the following form:

S(X)o(X) = A(X) + XZtB(X)

A summary of the previous results is:

rI = X6 + qIS(X)

r2 = S(X) + q2rl

Combining to form one equation:

r2 = s(x) + q2[x+ + q_s(x)]
= X_[q2] + S(X)[i + qlq2]

Substituting values :

i ffi X6[aSX + a 1°] + S(X)[l + (aSX)(aSX + al°)]
= X+[aSX + a 1°] + S(X)[al°X z + X + l]

Put in proper form of S(X)o(X) = A(X) + xZtB(X).

S(X)[al°X 2 + X + l] = Z + X6[aSX + a 1°]
s(x) [ a(x) ] = z + x+[aSx + a'°]

Therefore, the error-locator a(X) = a1°Xz+X+l = o2XZ+aIX+l.

Therefore, oi=1 and a2=a I°.

ar(X ) = XTo(X "I) = XZ(l+X'1+a_°X "z) = Xz + X + a I°
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Therefore, the error-locator polynomial reciprocal or(X) = xZ+x+a I°

using the Euclidean greatest common divisor algorithm. Notice that

the same or(X ) was correctly obtained as in section 4.3.1.1. Maybe

it is really possible to solve a set of NON-LINEAR equations for

the "correct" single solution!

4.3.2 Method 2: Linear Recursion Method for a(X)

The following is how we use the linear recursion method to solve a

set of simultaneous linear equations for ar(X ) . The following

equation is derived in appendix D.

T-1

Si = _"0 Si÷j'TOT'J
for i = T+FCR,T+FCR+I,...,2t+FCR-I

This is simply S i = Si.TO T + Si.T÷laT.I + ... + Si.la I for i=T+FCR,

T+FCR+I,...,2t+FCR-I.

Our non-erasure example has T = t E S t unknown error symbols to

solve for and FCR=I. In this example, t=3 error symbols so TS3

error symbols.

First, we assume that T=0 errors have occurred.

T>0 errors because at least one S| was nonzero.

For our example,

Next, we assume that T=I errors have occurred. We then obtain the

following set of equations from the previous general form:

k_

Si = j_=O Si÷j'lOl"J = Si'101 for i = T+I,T+2,...,2t

When these equations are completely written out they look like

this: S 2 = $Ioi, S 3 ffi$2ai, S 4 ffi$3ai, S s ffi$4ai, and S6 = Sso I. We

notice that these equations are insoluble and therefore T>I. For

example, if S 2 == n_SO = _0_0OIM G--_Sa0' then o I = a °; but this cannot be
since S3 = $2o I =

Since Trio and then T=I did not solve the equations, then try T=2.

This results in trying to solve the following set of equations:

I

St = _,,0 S|÷J'Z°2"J
for i = 3,4,5,6
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These set of equations result when T=2.

S10.2 + mEG I = S 3

$20.2 + $30.I = S 4

$30.Z + S4o I = S 5

S4o 2 + S5o I = S 6

It turns out that it is possible to pick any T=2 equations to solve

for the T=2 unknown 0.i values. Let us just pick the first two

equations from the preceding set of equations.

$10. 2 + $20.1 = S3

$20. z + $30.1 = S4

To determine whether T=2 errors have occurred, we can at this point

simply calculate the determinant of these T=2 equations. If the

determinant is non-zero, then T=2 errors have occurred. Otherwise,

we should continue this process for increasing T until TSt.

I $I S zLet IS0.12 = S 2 S 3

Check for a non-zero determinant of Is0.1,;DET IS0.1,is a scalar

magnitude called the determinant.

Next, we substitute the syndrome components S i values from

section 4.2.1 to obtain the following results.

0.2 + 0.1 = ",5

0.2 + ",50.1 = 1

Now check for a non-zero determinant of IS0.12-

Iss21 11 1DET IS0.12 = DET S z S3 = DET 1 ",5 = ",5 + I = ",10

The determinant is not equal to zero so therefore T=2 error

symbols. Remember that in a non-erasure example TSt. Now solve

for the values of o i for i = 1,2,...,T = 1,2.

DET i I i + ",5 ",10

0"1= = = -- = 1

DET I SO I z ",10 ",10

0"2 =

,,5 1

DET 1 ",5 ",1o + 1 ",5

DET ISO' 12 ",1o ",10

__ = (2"5 = ",10
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We can construct the error-locator or its reciprocal at this point.

The reciprocal of a(X) is shown below.

i=T

Gr(X) ----_=0 oixT'i with o 0 = 1

Or(X) = X z + aIX + oz = X 2 + X + _I0

Therefore, the error-locator polynomial reciprocal ar(X ) = XZ+X+_ I°

and T=2 errors have occurred. Again we receive the same results as

in sections 4.3.1.1 and 4.3.1.2. See appendix B for a hardware

design using S i to determine oj.

4.4 ERROR LOCATIONS x i

We find the error locations x i by first finding the error-locator

numbers z i. The z i are the roots of ar(X ) or are the inverse of the

roots of a(X). a(X) is as easy to determine as ar(X); once one is

determined, the other is also determined. I prefer to use ar(X )
instead of a(X) for two reasons: The first is to demonstrate that

there is usually more than one way to solve a problem; some

solutions are more easily applied and/or implemented and/or

calculated than others. We must always be on the alert for better

ways to do the same thing. The second is that Or(X ) is more

clearly defined from the error locations (see appendix D).

There are two equivalent algorithms to find the error locations x i.

They are the Chien search and explicit factorization. They both

find the roots in the error-locator.

4.4.1 Method 1: Chien Search

The following is how we perform what is commonly called the Chien

search. The Chien search calculates the outputs for all the

possible inputs; it is a very simple, brute force, search

algorithm. The Chien search determines the roots of either the

error-locator polynomial or of its reciprocal. The roots of the

reciprocal of the error-locator polynomial Or(X ) are the

error-locator numbers z i.

o (x) = (x + z,)
I-I for z| in the form of a j

Find the roots of a r (X), i. e., determine a r(X) =0 for
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X = l,(z,(z 2, . • • ,O{ n'l -

o r(x) = X_+X+a 1°

Or(1)

o_(-)
a_(a:)

a_(a__)

Or(a :)

Or("'.)
O'r ((Z°)

= (1) 2 + (i) + a I° = i + a s = a I°

= (a) 2 + (c,) + ,.,10= a2 + as = 1

= (1"2) 2 + ((Z 2) + C(10 = C(4 + c'4 = 0

= C(6 + e 12 = e 4

= (_8 + (Z2 = 1

= O_10 + 1 = (Z5

= e,12 + Oc7 = 0(2

= a14 + ¢.,6 = (28

= a + CZ = 0

The two error-locator (or error-location) numbers are z1=_ 2 and

zz=_8. It does not matter how the z i for i = 1,2,...,2t are

assigned to the roots of ar(X ). I prefer lower indices to

correspond to the lower locations in consecutive order and higher

indices to higher locations, e.g., I prefer z1=_ 2 and z2=_ 8 over

z1=_ s and z2=_ 2.

The error locations x i are defined from the error-locator numbers

z i as x i = X ^((logaz i)/G). Since in our example _r.=_1, then

x I = X^((log=zl)/S ) = X^((log=_2)/l) = X^(2/I) = X^(2) = X 2 and

x 2 = XA((log=zz)/S) = X 8.

Since Or(X ) in this example is a polynomial of degree two, it has

two and only two unique roots [e.g., XZ+X+_ TM = (X+a2)(X+_ 8) because

Or(_Z)=ar(_8)=0]. Therefore, there is no need to solve for the

remaining roots; all roots have been found at this point. However,

for the sake of completing the Chien search, the calculations for

the remaining roots are computed.

ar(a9) = a'
o.(aI0) = aS
a'.(a") = a
o_(a 'z) = a
o_(a'3)= az
o_(a '4) = a4

Notice that Or(O)=or(a") is never calculated because there are only

n = 2"-i locations in a primitive code. The locations are denoted

X°=l, XI=X, X 2, X3,...,X "'I = i, X, X z, X3,...,xn'I; in this example,

there is no X"=0=null position.

From section 4.2 the received word is repeated with the error

locations underlined from how we designed our example. These same

locations were also able to be determined by the Chien search.
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R(X) = xS+_llx 7 + _8X5+<xl0x4+cX4X3+<x3X2+_SX+_ 12

I I
Error location Error location determined

determined by the by the Chien search
Chien search

This section's Chien search results of x1=X2 and x2=X s checks with

the code word and the received word from section 4.2.

4.4.2 Method 2: ExDlicSt Factor_zatlon

The basic idea here is to change variables in o(X) or Or(X ) so as

to change o(X) or ar(X ) into a "standard" form whose factorization

is stored in a look up table. These techniques work well for low

values of t. In fact, this may even be faster than the Chien

search for low values of t. More information that discusses

techniques of variable substitution to simplify polynomials can be

found in coding and mathematics literature.

4.5 ERROR VALUES y|

There are two methods that I will present here:

solution and the error evaluator polynomial method.

the direct

4.5.1 Method I: Direct SolutioD

Since T, xi, and S i are known, we can solve the set of simultaneous

linear equations for Yi" The following equation is repeated from

Section 4.3. Reducing the following set of simultaneous NON-LINEAR

equations into a LINEAR set, the error values y| can then be
determined.

T

Si = Zj-1 yjzjl

where i = FCR, FCR+I, ...,2t+FCR-I and

where T for a non-erasure example is

the number of errors _ S t.

(equation 4.3-1)

For our (15,9) RS code example, these weighted power-sumsymmetric

functions reduce to:

2

Si =Z j,,| YjZj !

where i=1,2,...,6 and where

T=tE=2 S t-3 as determined
in Section 4.3.

74



Use equation 4.3-1 to construct the following set of 2t non-linear

equations :

y1(zl) + y2(z2) = S I

y1(zl) 2 + y2(z2 )2 = S 2

y1(z1 )3 + y2(z2 )3 = S3

y1(zl )4 + y2(z2 )4 = S4

y1(zl) 5 + y2(z2 )5 = S 5

y1(zl) 6 + y2(z2 )6 = S 6

We only need T=2 of these equations since we have T=2 unknowns

(i.e., Yl and Y2)" Pick two equations; I will pick the first two

since they look the easiest:

y1(zl) + y2(z2) = S I

y1(zl )2 + y2(z2 )2 = S 2

Substitute z1=_ 2 and z2=a 8 to transform the preceding set into the

following linear set.

YI(_2) + y2(o 8) = i

YI( °2)Z + YZ( as)z = 1

This simplifies to:

y1_ 2 + y2_ 8 = 1

Yl_4 + YZ<* = 1

Now use the standard Cramer's rule to solve for the coefficients.

I <*2 <*8DETIYI = DET <* = <*3 + r,12 = n, lO

Yl =

I <*8 1DET <* 1 a8 + <* a I°

DET I Y l <*,,10 <.1o

--= <*0 = 1

Y2 =

I _2 1DET a 4 1 <*2 + <*4 <.10

DET I Y I (,lO <.1o

= a0 = 1

Therefore, y1=l and Y2=l. The first and second error values Yl and

Y2 just so happen to be the same; y1=y2=<*°=l. It should also be

noted that Yi = 1,<*,<.2 (,.-I are all valid error values Yi
Notice that these error values check with the discussion of the

symbols in error within section 4.2. We got the correct decoding
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results!

4.5.2 _e_bod 2: Error Evaluator PolYnomials

There are two different polynomials for this method which solve for

the error values: section 4.5.2.1 describes the GCD polynomial and

section 4.5.2.2 describes the error evaluator polynomial.

4.5.2.1 Greatest Common Divisor Polynomial

The following is the GCD polynomial which solves for the error

values Yi"

S(X)a(X) = A(X) + X2tB(X)

Yi -

A(i/z i)

zi j-1 [i + (zj/zi)]

From section 4.3.1.2, A(X)=IX°=I-

A(I/Zl } 1

for i = 1,2,...,T and i_j

Then we follow the above form.

1

z_[l + (z21zl)] a2[I + aela2] _2(I + a6)

Yl =

1 1 1

U2r,13 r',15 1

Y2 =

A(I/Z 2)

zz[1 + (z,/z2)]

m

1

aa(1 + av)

Y2 "_

1 1 1

ascz7 a 15 1

Therefore, Y1-1 and y2-1.

Again notice that we obtained the same results

values y| (see sections 4.2 and 4.5.1).

for the error
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4.5.2.2 Hardware Error Evaluator Polynomial

This section describes an algorithm which is sometimes used in

implementations.

Yi =

z_ !I= (zi + zj)

for i = 1,2,...,T and

for i_j in the denominator

Where oi, j is defined by:

Solving for YI:

_-i (X + Zj) for i_j
j=0

*************** OR ****************

T-I

jZ=0 oi,jX T'I"j for i can= j

Yl =

$201, 0 + $101,1

z1(z I + z2)

01,j: X + z z = lX + z 2 = 01,0X + 01,1

__8Therefore, 01,0=1 and 01,1=z2=a 8. Now substitute 01,0=$1=S2=1 and 01,1 -

into the preceding Yl equation.

(z)(l) + (Z)(a s) i + a8 a2

Yl = = = -- = a0 = 1

e,2(a2 + a s) a4 + a I0 a2

Solving for Y2:

Y2 =

$2e2, 0 + $102,1

zz(zz + zI)

GI,j: X + ZI = Gz,0X + O2, I

Therefore, 02,0=I and 02,i--zI=_ 2.

(Z) (Z) + (Z) (a z) Z + a z

Yz = =
aS(a s + az) a + a I°

a8

m

,,,8

= a0---- 1

Therefore, Yl=l and Y2=l.
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Notice that we obtained the same error values Yi as in the first

description of the direct method (sections 4.5.1 and 4.2).

Another possible solution for the Yi is to solve the Yi and ai, j

equations for T=3 and then let z3=0 to receive the case of T=2.

Doing so will result in the following:

s3 + z2S2 as + (a8)(I) as + a8 a4

Yl = = = = -- = a0 = 1

Z12(Zl + Z2) a4(a 2 + a 8) a4 a 4

Y2 =

s3 + zlS2 as + (az)(1) as + a2 a
= = =--= a0 = 1

Zz2(Z, + Z2) a(a z + a 8) a a

Therefore, y1=l and Y2=l.

Still we obtain the same error values Yi (see sections 4.2, 4.5.1,

4.5.2.1, and the first part of this section).

4.6 DECODED CODE WORD C(X)'

Now since we have already calculated all our error locations x i and

error values Yl, we have just finished constructing our estimate of

the error E(X)' which is simply the estimate of the noise.

T
E(X) ' = Z

f-1
YiXi = YlXl + Y2X2 = (i)(X 2) + (I)(X 8) = X 2 + X8 = X 8 + X 2

Notice that since y1=y2=...=yT=l within the main (15,9) RS example

for our particular R(X), E(X)' just so happened to be a binary

polynomial. Yi = l,a,a2,---,a"'1 and thus E(X)' is always a

polynomial with code symbol coefficients.

The received vector is a function of C(X) and E(X);

R(X) = C(X) + E(X). Since the decoder only has the received vector

R(X) and since it can calculate our estimate of the error E(X)',

the closest code word C(X)' can be determined as a function of R(X)

and E(X)'.

C(X)' = R(X) - E(X)' = R(X) + E(X)'

Therefore, we find our closest code word by adding (equivalent to

mod-2 subtracting) our estimate of the noise to the received block

of data.
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C(X) ' = R(X) + E(X) '

= [XS+_11X7 + _SXS+a10X4+_4X3+_3xZ+_SX+a12] + [X8 + X 2]

= (I+I) X8+_11X 7 + _SxS+_1°_+_4X3+ (_3+I) X2+_8X+_ 12

= a11X7 + _8XS+_10X_+_4X3+_I4X2+_8X+_ 12

C(X)' is indeed the same as C(X) in this example!!!

C(X) ' = n'11X7 + n'SxS+n'10X4+cZ4X3+_14X2+czSx+(212

From Section 4.2 the following code word was transmitted.

C(X) = _11X7 + _8X5+_lO_+_4X3+a14X2+_Sx+_12.

expected!

Therefore, C(X)'=C(X) as

Now strip the message field from the corrected data.

M (X) ' = Cn_1 ! X k'l + Cn.21 xk-2 + • • • + Cn.k+l I X + Cn. k '

= 0¢11X

The message M(X) transmitted systematically within the code word

C(X) is M(X) = e11X. Therefore, M(X)'=M(X) as expected.

Now strip the check field from the corrected data.

CE(X)' = Cn.k.l'X n'k'l + Cn.k.2'X n'k'2 + ... + CI'X + C O'

= 0_8X5+_ 10X4+_4X3+ O_14xZ+(xSx+ O_12

The check CK(X) transmitted systematically within the code word

C(X) is CK(X) = _SxS+_I°_+_4X3+_14X2+_SX+a12. Therefore, CK(X)'=CK(X)

as expected.

Notice that since there was definitely TSt actual error symbols,

our decoding process actually picked the same code word that was

transmitted. The message M(X)' is then systematically extracted

from the decoded code word C(X)'. The parity-check CK(X)' can also

be systematically extracted if needed. In many applications the

decoded parity-check CK(X)' is usually thrown away or is not even

determined! Who needs it? Maybe someone might need the received

(or played back) word R(X), but who needs CK(X)'? The C(X)'

results demonstrate the correct decoding of a Reed-Solomon code.

It works! It really works!

4.7 SUMMARY

In chapter 4 our RS code is demonstrated to be able to be decoded.

This is because we are able to take our original message
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symbols M(X), append parity-check symbols CK(X) to it, send it,

corrupt it with errors E(X), receive it as R(X), and then decode

R(X) back into our original M(X) if TSt. We were able to

demonstrate a simple example of a mk = 36 bit message (i.e., the

binary sequence ,,000000000000000000000000000011100000"), encode the

message by systematically adding redundancy to develop a mn = 60

bit code word (i.e., the binary sequence "0000000000000000000000000

00011100000010101110011100101011111"), transmit (or record) it,

allow errors to corrupt it, receive (or play back) it as a mn = 60

bit received word (i.e., the binary sequence "000000000000000000000

000000111100000010101110011100001011111"), and finally to decode

the received word back to the exact original 36 bit message. This

(15,9) RS example could correct a maximum of 3 code symbols out of

15 code symbols; this code can withstand a maximum symbol error

rate SER_x (or simply block correction BC=t/n) of t/n = 20%. It is

equivalent (but awkward) to indicate that this (15,9) RS example

could correct up to a maximum of any where between 3 and 12 bits

out of 60 bits depending where the bit errors occur. Usually this

code is said to be able to withstand a SER = 20%.

If we feel good about the RS coding operations so far, then let us

move onto chapter 5. Otherwise, we should reread the previous

chapters. This coding stuff is fun!
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CHAPTER 5

SYMBOL ERASING AND REED-SOlOMON CODING

We should now know the Reed-Solomon encoding and decoding

operations which were presented in the previous chapters. Knowing

this, let us continue and instead of assuming hard decision at the

decoder, let us assume soft decision. If we have the soft decision

capability, we can come up with an algorithm to pick a few of the

worst quality symbols within each block length as the ones which

might be in error. Since we have such flags in many systems (i.e.,

E b levels, signal format violations, etc.) soft decision is quite

possible. Also as n increases, it becomes easier to correctly

determine at least some of these highly likely error symbols. By

somewhat knowing some of the error locations through soft decision

capabilities, the decoder can now work on not only TSt errors, but

also T>t errors! The overall error correction capability

increases!

A correctly designed decoder using soft decision (e.g., using the

symbol erasing capability of RS codes) should yield better

performance than running the data only through a RS decoder without

soft decision.

THE DECODING PROCESS USING SYMBOL ERASING IS A THREE-STEP PROCESS:

i. Calculate the syndrome components and the modified

syndrome components.

2. Calculate the error-locator word for the error locations.

1 Determine the decoded error pattern and correct the

errors in the received word.

5.1 RS CODING USING SYMBOL ERASURE

If the demodulator within the coding system flags certain received

code symbols R i as unreliable, then these symbols are treated as

erasure symbols; AN ERASURE SYMBOL IS DEFINED AS AN ERROR SYMBOL

whose erasure location xi" is known to a high degree of probability

from the demodulator (and therefore the corresponding erasure value

Yi" is known to a low degree of probability from the demodulator).

If we accidentally flag an error-free symbol as being an erasure

symbol, the soft decision process can still decode properly! We

can pass any erasure symbol R|" to the decoder and the soft

decision process can also still decode properly! Symbol erasing is
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NOT deleting symbols, but rather erasing them. Symbol erasing is

erasing some received symbols NOT the entire received word. Symbol

erasing can be, but is usually not, working within the gray zone.

It is possible to increase the SNR a little by NOT necessarily

resetting the erasure symbol Ri" to zero! THIS CHAPTER ASSUMES
THAT THE DEMODULATOR PASSES WHATEVER ITS BEST ESTIMATE OF THE

RECEIVED SYMBOL VALUES ARE TO THE RS DECODER.

The reason why the symbol erasing issue may be important is that

the power of the error correcting code increases. The upper limit

of T=2t error symbols can be reached if all 2t errors can be

flagged as erasures. However, there are a few drawbacks. First of

all, correcting erasures requires many times the computational

capability. Secondly, in some systems the accuracy of the

demodulator to correctly determine the erasure status may be too

low for substantial increased system error correction; in fact, if

it is poorly designed, it may even decrease the system's error

correction capability.

A coding system which corrects erasures can correct up to t E errors

and tE" erasures if 2tE+tE" _ d-i where the distance d S dmi". For

RS codes, we can correct all t E and all t E erasures if
2tE+tE" S d.ln-I or rather 2tE+tE" _rors "

For a (15,9) RS code: t c (errors) _c" (erasures}

0 6,5,4,3,2,1, or 0

1 4,3,2,1, or 0

2 2,1, or 0

3 0

To explain how the RS code can correct T>t error symbols using

erasure, assume the demodulator flagged the X 7 and X 2 locations as

being unreliable. Therefore, by the demodulator's particular

algorithm and symbol quality data, it has decided that these were

erasure symbols; the X 7 and X 2 locations are considered to be

erasures. In our previous (15,9) RS example which has T=2 error

symbols at the Xa and the X 2 locations, the RS code, besides

correcting the two errors, could have corrected an additional

tE" S d-2t E = 2 erasures. Assume a similar case as in the previous

(15,9) RS example, but with two erasures at the X 7 and the

X 2 locations with two errors at the Xa and the Xl-X locations.

Remember that ERASURES ARE ERRORS whose erasure locations are

probably known for sure and whose erasure values are probably not

known.

Let the same message and thus the same code word be sent as in

chapters 1,2,3, and 4. The following is our (15,9) RS erasure

example:
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M(X) = _11

C(X) = _11X7 + _SxS+_1°X4+a4X_+_14X2+_SX+_ Iz

Assume more than t errors were injected into the code word, i.e.,

assume T>t. A system without symbol erasing capability would not

be able to correct the received word because T>t (except for a few

rare complete decoding cases). Usually, there is only a high

probability of error detection. Now assume the input to the

demodulator to be some type of modulated "channel symbols" which

represent the following:

R(X)' = Xs+"?"X 7 + aSXS+_1°_+e4X3+"?"X2+_gX+e12

i j
very weak and noisy "channel symbol "

The output of the demodulator is equivalent to the input with some

or all of the poor quality locations flagged as erasures. Also,

the demodulator should pass its best guess of the value at each

location because sometimes it may guess correctly. In other words,

the following is given:

R(X) " = X8+_7X7_ + _8X5+_1°X4+_4X]+_Sx2+_QX+_12
i

(unret,abLe code .ymboLs_

After R(X)" is processed by the RS decoder with erasure capability,

the following code word should result:

C(X)" = a11X7 + aSXS+_1°X4+a_X3+_14X2+_SX+_12 = C(X)

In summary, since C(X)" can equal C(X), it is possible to correct

T>t error symbols if some of the poor quality locations can be

determined to be erasures. In fact, if all the actual error

locations are known, thus all the errors are erasures, the code can

correct up to a maximum of T=2t error symbols. This particular

example with four errors (two errors plus two erasures) will be

completely decoded in sections 5.2 and 5.3; T=4>t=3 in our

(15,9) RS example.

The following figure and table illustrate the architectural

differences between a RS coding system with and without erasure;

also see figures 3.1-1 and 4.1-1 and tables 3.1-1 and 4.1-1.
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Figure 5.1-1. - RS coding block diagram with erasure capability.
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TABLE 5. i-i. - RS SYMBOL ERASURE POLYNOMIAL DEFINITIONS

received word R(X)" in an erasure system consisting of received

symbols R i'':

R(X)" = C(X) + E(X)

= [(Cn.I+En.I)Xn-I + (Cn.2+En.2)xn'2 + ... + (CI+EI)X + (C0+E0) ]

Rn.lt'X n'1 + Rn.2"X m-2 + ... + RI"X + _"

erasure positions xi":

xi" = X j for i = 1,2,...,t£" AND for j defined from the

demodulator where t E = number of errors, tE" = number

of erasures, and 2tE+t£" < 2t.

decoded error pattern E(X)" in an erasure system consisting of

error locations x i (which can include erasure locations xi" ) and

error values Yi (which can include erasure values Yi"):

E(X)" = ylxl + Y2X2 + ... + YTXT

decoded code word C(X)" in an erasure system consisting of code

word symbols Ci":

c(x),, = R(X)" - E(X)-

= R(X)" + E(X)"
= xn'kM(X)" + CK(X)"

= x"'kM(x) '' + x"'kM(x) " rood g(X)

= Cn.I"X n'l + Cn.2"}_'2 + . .. + Cl"X + Cot'

decoded message (or data or information) M(X)" in an erasure system

consisting of message symbols Mi":

"X k'l + C 'mxk'2 + ... + Cn.k÷lttX + On.k"
M(X)" = Cn.lllxk. 1 Mn'211yk-2

= Mk. I + + + MI"X + M0""'k-2 .....

decoded parity-check CK(X)" consisting of check symbols CKi":

CK(X)" = Cn.k.lttX "'k'l + C 'iX n'k'2 +...+ ClttX + CO"

= "C_.k.1 ''xn'k'1 + --'%-k-Zp_n'k'Z'ty"'k'Z'"+ " + CKI"X + C_"

5.2 RS ENCODING USING SYMBOL ERASURE

The encoding procedure for RS codes using erasure is identical to

RS codes without using erasure (see chapter 3). This is due to the

fact that symbol erasure is soft decision, but only at the

demodulator and decoder and not the modulator and encoder. Because

of this and the discussion in section 5.1, the message and code

word are M(X) = Gllx and C(X) = Gllx7 + _SxS+_10X4+G4X3+_14xZ+_Sx+G 12.
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5.3 RS DECODING USING SYMBOL ERASURE

In order to demonstrate the increase in error correction by using

symbol erasure, the decoding operations are demonstrated for the

(15,9) RS code example as discussed earlier in sections 5.1 and

5.2. In the following sections within 5.3, all the decoding

operations for the received word R(X)" = Xs+uTX 7 + aSXS+_I°X4+_X3+a3X2

+_9X+_12 will be shown. For learning purposes, R(X)" was made very

similar to the R(X) for the nonerasure (15,9) RS example found in

chapters 3 and 4 and appendix C; R(X) e,rtierex_t e = xS+_IIx? + _8X5
+_I0_+_4X3+_3XZ+_SX+_12"

THE DECODING PROCESS USING SYMBOL ERASURE IS A SIX-STAGE PROCESS:

. Calculate the 2t syndrome components from the received
word.

. Calculate the 2t-rE" modified syndrome components from

the syndrome components and the erasure locations.

• Calculate the tE error-locator coefficients from the

modified syndrome components.

g Calculate the t E error locations from the error-locator

numbers which are from the error-locator word.

o

Calculate the T=t_+t_" error values and erasure values

from the error-locator numbers and the erasure-locator

numbers.

e Calculate the decoded code word from the received word,

the error and erasure locations, and the error and

erasure values•

5.3.1 Erasure Determination

Assume the received word has the errors

presented in sections 5.1, 5.2, and 5.3.

are placed in table 5•3.1-1.

and the erasures as

The summarized results
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TABLE 5.3.1-1. - CODE WORD C(X) USED IN (15,9) RS ERASURE EXAMPLE

Code Received Received

word word word

Location symbol symbol symbol

--/zil-- c_ __R___ ___ER_"

Erasure capability

(without--> with)

X 8 0 1 1

X 7 _11 ? ?=a7

X 2 _14 ? ?_G3

X n,8 n,9 cz9

error--> error

error --> erasure

error --> erasure

error --> error

So therefore assume our new received word has two errors and two

erasures.

R(X) " = Xs+_ZX 7 + aSXS+aI°X4+_4X3+_3X2+_9X+_ 12

I I I J
I ERASURE I ERROR

ERROR ERASURE

Because we are now handling two "errors" and two "erasures," the

code is actually correcting T = tE+tE ''= 4 error symbols greater than

t=3 error symbols, but less than, or equal to, 2t=6 error symbols!

Do not confuse T = tE+tE" and 2tE+tE" S 2t with TS2t; T can equal 2t

when tE=0.

5.3.2 Syndrome Components S i

The first stage is to calculate the syndrome components S:. For

our example, FCR=I and aG=u I. R(X)" = xS+a7X 7 + (_SxS+(xIOx&+_4X3+_3X 2+

_,9X+0_12.

S I = R(_)" = a 13

Sz = R(aZ)" = a 4

$3 = R(a3),, = _11

S4 = R(a4)" = alZ

$5 = R(_S),, = _14

$6 = R(_6),, = u14

Since not all the S i are zero, then we know that T=tE+tE">0.

5.3.3 Modified Syndrome Components Si'!

The second stage is to calculate the modified syndrome components

Si" from the syndrome components S i and the erasure-locator

coefficients oj"-.
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rE"

Sill = _z0 oj"Si'J for i = tE"+FCR,tE"+FCR+I , ...,2t+FCR-I

From the demodulator, x1"=X 2 (or ZI"=_2 because (zG=,',1) and x2"=X z (or

z2"=a 7 because _G=_I), therefore, tE"=2 erasures are given. Since we

are going to use tE"=2 erasures for this example, hopefully

tE<2 errors; tE < (2t-tE")/2. If we later determine that

tE>2 errors, then we can decrease our t£"; e.g., if tE=3, then

tE"<2(t-tE) which for this example would be tE"=0.

It does not matter how the locations are assigned to the xi".
However, I prefer lower locations to correspond to lower indices

and higher locations to higher ones (i.e., x1"=X 2 and x2"=X z not
x1"=X 7 and xz"=X 2). The reciprocal of the erasure-locator polynomial

at(X)" is defined as having the erasure-locator numbers zi" as its
roots :

Nat(X)" = (x + zi")i=I

or(x)" = (x + z")(x + zz")
= (x + el)(x + a7)
,,, X2 + a12X + Oc9

Therefore, or(X),, = X2+GI2x+G 9 and so eI"==12 and e2"=a9 because
a(X)" - a2"XZ+a1,,X+l. Since a0"=a 0 is defined to be 1 and therefore,

the ai" is defined for i=0,1,2,...,tE" , we finally determine the

modified syndrome components Si".

,,= _
S| j-0 Ojl'Si'j for i = 3,4,5,6

Substituting values:

$3" = S3 + O1"S 2 + O2"S 1 = G11 + GIZQ& + GgG13 = G11

$4" = S& + Ol"S ] + O2"S 2 = G10
$5" = S5 + GI"S & + o2"S 3 = a8
$6" = S6 + Ol"S 5 + O2"S 4 = a 7

+ (2 + G7 = n'10

Therefore, $3" u 10 $4" a 10= , = , $5. = GS, and $6" = r,7.

5.3.4 Error-Locator Coefficients oI

The third stage is to calculate the error-locator polynomial o(X)

from the modified syndrome components. For instructional purposes
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we set up our example for t£=2.

rE-1

Sill = _j=O Si+J'tE"0"tE'J
for i = T+FCR,T+FCR+I,...,2t+FCR-I

I

Si" -- j_=0 Si+J'2"0"2"J for i = 5,6

S3"O" 2 + $4"0.1 = S5"

$4"0" 2 + $5"0.1 = S6"

Substitution of values is shown below:

a100. 2 + aI00. I = a 8

al°a 2 + a 80" 1 = a 7

Therefore, 01=a 1° and 0.2=a9 and so a(X) = agX2+al°X+l.

5.3.5 Error Locations x i

The fourth stage is to calculate the error locations x i using the

roots of the reciprocal of the error-locator polynomial a_(X).

Determine the error-locator numbers z i from ar(X ) = XZ+a1°X+a9. r

ar(l ) = rv6

0"r (a) = 0

or(a2) = aS
0.r(a3) = a7

ar(a 4) = as

0.r(a s) = a 6

0.r(a 6) = a 10

0.r(a7 ) = a I0

a r(a8) = 0

Therefore, z1=a and zz=a 8. Since aG=a I in our example, the

corresponding error-locations x I and x z are simply X and X 8.

5.3.6 Error Values y|

The fifth stage is to calculate the error values Yi" At this point
there is no need to make a distinction between errors and erasures.

Therefore, rearrange the indices such that the lower ones

correspond to the lower locations. BEFORE: T=tE+tE"=4 errors and
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erasures, z I,,__2- , z2"=_7 , zI--_ , and z2=:,8 (and xI"=X 2, x2"=X 7, xI--X , and
,,

x2--Xs) , and yls , Y2", Yl, and Y2" AFTER: T=4 errors, zI=_ , z2=a 2,
z3=:,7, and z4=:, (and x1=X, x2=X 2, x3=X 7, and x4=X 8) , and Yl, Y2, Y3, and

Y4" Now solve for the error (including erasure) values.

T

Si = _1 YJZJl for i = FCR,FCR+I,...,T+FCR-I = 1,2,...,T

The following are the

simultaneous equations:

set of the independent NON-LINEAR

YlZl + Y2Z2 + Y3Z3 + Y4Z4 = S I

YlZl 2 + Y2Z22 + Y3Z32 + Y4Z42 S 2

ylzl 3 + y2z23 + y3z33 + Y4Z43 S3

ylzl 4 + Y2Z24 + y3z34 + Y4Z4 _ S4

Substituting values, the set becomes a set of independent LINEAR

simultaneous equations:

ay I + _2y 2 + _7y 3 + _,8y 4 = :,13

_2Yl + _4y2 + :,14y3 + _Y4 = ,.,4

:,4yl + + = Y3 + =2y4 = =12

Therefore, ylfa Iz, y2ffil, y3=:,8, und y4ffil.

5.3.7 Decoded Code Word C(X)"

The sixth and final stage is to construct the decoded code word

C(X)". The error locations x 2 and x 3 were determined in section 5.1

and again in section 5.3.1; x2=X 2 and x3=X 7. The error locations

x I and x 4 were determined in section 5.3.5; XlffiX and x4=X 8. All the

error values Yl, Yz, Y3, and Y4 were determined in section 5.3.6.

Using erasure, the decoded error E(X)" is simply the x| and the Yi
as follows:

T

E(X)" ffiZ yix|
I-I

E(X)" " YlXl + Y2Xz + YX3z' + Y_
= aUX + lX z + _sX7 +

= XS+aSX r + XZ+alZX
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The decoded code word using erasure is:

c(x),' = R(X)' + E'(X)'
= [XS+O7X 7 + 08X5+OI0_+o4X3+o3X2+O 9 X+O 12]

+ [X8+o8X7 + X2+o12X]

= (I+I) X8+ (o7+o 8)X z + oSX5+O1°_+o4X3+ (o3+i) X 2+ (_9+012) X+o 12

Therefore, C (X) " = a11X z + oSXS+o1°X4+o4X3+o14X2+aSX+a 12. From

section 3.3.2 or sections 5.1 or 5.2, C(X) = o11X7 + oSX5+o1°_+o4X3+

014X2+oSx+o 12. Therefore, C(X)"=C(X) as expected!

Strip the message field from the corrected data. Therefore,

M(X) " = Cn-I"xk'I+Cn-2 ''Xk'2+" " "+_n-k÷1"Y+P'"_n-k" = o11X. From sections 3 .3. 2

or 5.1 or 5.2, M(X) = o11X. Therefore, M(X)"=M(X) as expected.

Strip the parity-check field from the corrected data. Therefore,

CK(X)" = Cn k 111xn'k'1+Cn k2 llxn'k'2+" " "+CIIIX+CNII = °sX5+°1°X4+°4X3+°14X2+°SX+

012 . From sections 3.212 or 5. I, CK'(X) =- o 8xs+-10v4+o4x3+O14X2+OSx+o12u_

Therefore, CK(X)"=CK(X) as expected.

Therefore, we correctly decoded our (15,9) RS example with T>t

error symbols using erasure capability! In fact, we pushed T to

the maximum error correction capability of an erasure system for a

particular value of t E. If t E were a smaller value, then we could

have somehow picked more erasures (even if the demodulator was so

called happy enough); this should also increase the SNR slightly.

If t E were a larger value, then we would have to pick fewer

erasures.

5.3.8 petermininq tc in a Symbol Erasure System

For instructional and clarity purposes, the preceding sections

ASSUMED tE=2. In this section, we will again learn how the decoder

can determine the value of t E using MLD.

In our example worked in the preceding sections, the decoder was

given tE=2. In real life the decoder must determine t E using MLD.

It first assumes that tE=0. If tE=O does not work, then it tries

tE=l. It keeps increasing t E (tESt) until it can solve the

equations to determine the value of t E.

Let us now complete the work on the (15,9) RS erasure example. One

of the ways to determine t E is to first determine T. We could

calculate the 2t syndrome components and then determine an

error-locator polynomial using Berlekamp's iterative algorithm.

For our example with TSt, we obtain o(X) = o1°X3+oTx2+o6X+l. This is

a third degree polynomial and only has one root, i.e., o(o6)=0 or
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a 6 is the only root. Therefore, since there should be three roots

and only one GF(16) root exists for this t=3 degree polynomial,

T>t. Since T>t then tE+tE">t and therefore tE>t-tE" or tE>l

(assuming all the erasures are non-error-free symbols). Then we

can proceed and try tE=2 and work the problem as shown in

sections 5.3.4, 5.3.5, 5.3.6, and 5.3.7.

Another way to determine tE is to first assume tE=0. If tE=0, then

T=tE+tE"=2 locations, and thus u(X)=0; we do not need to complete

the second, third, and fourth stages. We need to determine the

erasure values YI" and Y2" which at this point we simply denote as

the error values Yl and Y2" We solve for the error values as shown
in section

equations:

5.3.6 and this results in the following set of

YlZl + yZz2 = S 1

ytZl_ 2 + y2z2 2 ffi S 2

YlZl 3 + Y2Z2 3 = S 3

ylz1_4 + y2z2 4_ = S4

YlZl _ + Y2Z2 _ = S 5

ylzl 6 + yZz26 = S 6

We choose any T=2 equations to solve for the T=2 unknown Yi"

YlZl + Y2Z2 = S 1

YlZl 2 + y2z2 2 = S 2

Therefore, ylfa9 and y2ffia12 with zlffiZl"ffia2 (XlfX1"=X 2) , z2=z2"=a 7

(x2=x2"=XT), S1=a 13, and S2=a 4. We then form our decoded error

pattern E(X)" = YlXl + y_x_ = a9X 2 + a12X 7. The decoded code word

C(X)" = R(X)" + E(X)" = XS+a2X7 + aSXS+a1°_+a4X3+aX2+agx+a12, but this

is not a valid code word! It is not a valid code word because the

syndrome of C(X)" is NOT zero, e.g., the third syndrome component

of C(X)" ffiC(a3) " _ 0. Therefore, rE>0 errors occurred.

Next assume tEffil. Si" ffi Si.1"o I for i ffi 4,5,6. oI=S4"/S%" which

should be the same as ui=$5"/$4" and oI=S 6'/$5", but is not!

Therefore, tE>l.

Now we try rE=2 and work the problem as shown in sections 5.3.4,

5.3.5, 5.3.6, and 5.3.7.

We should note that if tE>2 in our erasure example, then we would

continue the MLD process for increasing values of t E (tESt) . In our

example, if we increase t E past tEffi2, then we would decrease rE" by

two each time that we would increase _ by one; 2tE+_"S2t.
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5.4 SUMMARY

In chapter 5 the Reed-Solomon code with symbol erasure capability

was demonstrated to be working for T = tE+tE" > t error symbols.

This is because we are able to take our original message M(X),

append check information CK(X) systematically to it, send it,

corrupt it with noise, receive it, send it through our demodulator

with symbol erasure detection capability, and then decode the

received vector R(X) back into our original M(X). Of course,

symbol erasure systems can also correct TSt error symbols!
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APPENDIX A

RS HARDWARE ENCODING DESIGN

This appendix will step us carefully through

implementation to perform the RS encoding process.

usually implemented using a SRC.

a common SRC

RS encoders are

A.I (15,9) RS SHIFT REGISTER ENCODER CIRCUIT

To develop a RS encoder, a SRC is usually used. Figure A.I-I shows

the SRC for our (15,9) RS example where g(X) = X6+_1°XS+_I4x_+_4X 3

+G6X2+_gX+_6. Other RS codes can be implemented in the same manner.

As in most, if not all, of encoder/decoder systems (codec systems),

the encoder is the easy part to understand and to apply into

hardware.

There are a few notes on the operation of the encoder circuit

within figure A.I-I: When the switches are open, their outputs are

all pulled to zero. The exception is when the switch outputs are

the inputs to the output shift register; then, they are open

circuited.

Table A.I-I presents the procedure necessary to operate the

(15,9) RS encoder which is shown in figure A.I-I. The figure after

figure A.I-I, i.e., figure A.I-2, shows the blow up of the output

shift register.

Step i.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

TABLE A.I-I. - (15,9) RS ENCODER PROCEDURE

Clear feedback shift register [X°=XI=...=xZt'I=0].

Enable switch A and disable switch B.

Clock the information symbols into the circuit, most

significant symbol first (clock k times).

Disable switch A and enable switch B.

Clock the check symbols out of the circuit (clock n-k

additional times).

The resultant code word is in the output shift register.

GOTO either Step i or Step 2.

IM_._jNT£NT_NA[.L$ BI_M!
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g(X) = X6+a1°XS+a14X4+a4X3+a6X2+agX+a 6

-->[ MULT BY go=_ 6

-->I MULT BY g1=a 9

-->[ MULT BY g2=a 6

-->I MULT BY g3=a 4

-->[ MULT BY g4=_14 1

-->[ MULT BY gzt_1=gs=a I°

--> sw A2

I >I sw B OUTPUT

_iI SHIFT
REGISTER

(iss) (mss)

M(X) C(X) <--

Figure A.1-1. - (15,9) RS encoder shift register circuit.
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RS Parity-

<-- Check Symbols -->

X 6 X 7 X 8 X ? X I0 X 11 X 12 X 13 X 14

< RS Data Symbols >

least significant symbol

(last byte transmitted)

CCSDS BYTE 0 (zero)

(LSB)

most significant symbol

(first byte transmitted)

CCSDS BYTE N-I

(MSB)

Figure A.I-2. - Blow up of the output shift register.

In an attempt to explain the different states of the hardware in

detail, tables A.I-2 and A.I-3 are given with message M(X) = a11X.

TABLE A.I-2. - FEEDBACK SHIFT REGISTER STATES

Feedback Shift Register

Case Mi = °j Xi X° Xl X2 X z X_ X s

0 ....... 0 0 0 0 0 0

1 M a =0 Xs 0 0 0 0 0 0

2 M 7 = 0 X z 0 0 0 0 0 0

3 M 6 = 0 X6 0 0 0 0 0 0

4 _% = o xs o o o o o o
s M4=o x4 o o o o o o
6 M3=o x3 o o o o o o
7 M 2 = 0 X 2 0 0 0 0 0 0

8 M I = O_11 X (_2 r,5 ,.,2 1 _1o ,.,6

9 M o = 0 1 (Z12 ,,,8 U14 _4 o_1O _8

I0 ....... 0 a12 ,,,8 ,n,14 Cz4 a10

ii -- = .... 0 0 O_12 a s a 14 04

12 ....... 0 0 0 ,.,12 a8 a_4

13 -- = .... 0 0 0 0 ,.,12 a8

14 ....... 0 0 0 0 0 o 12

15 -- = .... 0 0 0 0 0 0
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Case

TABLE A.I-3. - OUTPUT SHIFT REGISTER STATES

< Output Shift Register >

1 X x2 X3 X4 X5 _ X7 _8 X9 X10 _11 _12 x13 x14

____ ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

1 0 ............................

2 0 0 ..........................

3 0 0 0 ........................

4 0 0 0 0 ......................

5 0 0 0 0 0 ....................

6 0 0 0 0 0 0 ..................

7 0 0 0 0 0 0 0 ................

8 u 11 0 0 0 0 0 0 0 ..............

9 0 u 11 0 0 0 0 0 0 0 ............

I0 (18 0 (111 0 0 0 0 0 0 0 ..........

11 (110 (18 0 (111 0 0 0 0 0 0 0 ........

12 (14 (110 ,_,8 0 (111 0 0 0 0 0 0 0 ......

13 (114 (14 (110 (18 0 (111 0 0 0 0 0 0 0 ....

14 (18 t,,14 (14 (z10 (18 0 (111 0 0 0 0 0 0 0 --

15 (112 (18 (114 (1/, (110 a8 0 (111 0 0 0 0 0 0 0

It should be noted that the code word C(X) is the value in the

output shift register during case n; in this example, n=15 so

C(X) - (111XT+(18XS+(11°X4+(14XZ+(114XZ+(1SX+(11z. This checks with the earlier

calculation for C(X) within chapter 3.

To explain how tables A.I-2 and A.1-3 are developed the following

equations and sample calculations are given. These are simply

derived from figure A.I-I:

Case 0: X ° = X I = X 2 = X3 = X4 = X 5 = 0

Case 1 through case k=9:

X° = (XSotd + M(X))(16

x' X°o,.,:,+ (X_ot,:,+ ,(x))(1'
x z = X'ot _ + (X_otd + M(X)),', 6
x3 X;otd+ (X_o,.d + M(X)),."
X4 = X_ot,:,+ (X'ot,:, + M(X))(1'"
Xs X"oLd + (X'ot d + M(X))o_ 1°

Case k+l=10 through case n-15:
X° = 0

X 1 = X_lotd
Xz
X 3 X2°td

= X3old
X4 ,,, X ol.d
X 5 ,,. X4otd
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Working through some of the calculations:

Case 0:

X ° = X I = X 2 = X 3 = X4 = X s = 0

Case 8 :

X 0 = (XSotd+M(X)) 0:6 =

X I = X 0 + (XSotd+M(X))0:9
X 2 1°td
X3 X2°td + (XSotd+M(X))0:6

X3o[d + (XSotd+M(X))0:4
X4 X.otd + (XSotd+M(X))r' 14

Xs X4otd + (XSoLd+M(X)):,IO

(0+0:11),,,6 = (0:11)0:6 = 0:2
(0:11)0:9 = 0:s
(0:11)0:6 = 0:2
(0:11)0:,,4 = 1
(0:11) ,,,14 = 0:1o
(0:,I),,:0 = _,6

Case 9 :

X 0 = (XSotd+M(X))0:6 = (0:6 +

X I _-- X 0 + (XSol.d+M(X)),,,,9 0:2 +
X 2 1°[d
X 3 X2o[d + (X5ol,d+M(X ) )0:6 n,5 +

X 4 X3otd + (X_otd+M (X)) 0:4 0:2 +
X.ot d + (X_otd+M(X))0:14 1 +

X s X_otd + (X,otd+M(X))0:10 0:1o +

O) n'6 = (0:6)0:6 = a12

(0:6)0_9 = 0:8

(0:6)0:6 = 0:14

(0:6)0:4 = 0:4

(0:6) 0:14 = a10

(0:6)0:10 = aS

Therefore, CK(X) = 0:8XSd'0:10X4+n'4X3+0:14X2'+n'Sx+n'12.

The parity-check symbols are available in the feedback shift

register after the message symbols M(X) have been clocked into the

circuit k times. Cases k+l through n simply shifts these check

symbols out of the feedback register and into the output shift

register which already contains M(X) at that time.

A.2 OTHER RS SHIFT REGISTER ENCODER CIRCUITS

CK(X) = xn'kM(x) mod g(X). The hardware can take care of the time

delay by just piecing the data fields together at the proper time.

So our input can be either xn'kM(x) or just M(X) to determine the

following hardware decoder. The following SRC is of the same

Galois configuration as figure A.I-I.
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INPUT = xn'kM(X) = M(X)

-'''< I

gn-k-1 i

' _>[ CKn.k-1
i
,.J

Figure A.2-1. - Encoder SRC using CK(X) = M(X) rood g(X).

CK(X) = xn'kh(X)M(X) mod (xn+l) because h(X) = (Xn+I) / g(X). The

following circuit is using this parity-check polynomial h(X)

instead of the generator polynomial g(X); h(X) is related to g(X).

The circuit is initially loaded with the M i. Notice that this

Fibonacci configuration uses the reciprocal of h(X) to dictate the

sequence of the coefficient connections.

hk-2

OUTPUT = CK(X) = x"'kh(X)M(x) rood (X"+I).

Figure A.2-2. - Encoder SRC using CK(X) = xn'kh(X)M(X) rood (Xn+l).

Besides the Galois and Fibonacci configurations, there are others

is the

confl rations which is more closely ma_,,_'gu Berlekamp. The Galois
• -Serial Reed-Solomon Encoder by Elwyn R.

Blt ..... _.... _^_ are more straightforward from a
'bonaccl Condom _a_w''"

and. F1 ...... _ --^-e easily understood viewpoint. However,.the

marne are more efflclent from an Implemen_atlon
Bit-Serial encoders

viewpoint. If there is further interest in Bit-Serial encoders,

please refer to the references section.
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APPENDIX B

RS HARDWARE DECODING DESIGN

If one only views the coding system as a mapping and demapping

procedure and tries to design a look-up-table hardware circuit, one

is in for a big surprise. This type of design is impractical

because it requires a ridiculous amount of memory; Table B-I

testifies to this fact. We need a better hardware design than this

family of designs!

TABLE B-I. - MEMORY TABLE OF A LOOK-UP-TABLE HARDWARE CIRCUIT

Code: RS encoder RS decoder

(n,k) 2 _ X m(n-k) bits 2 _ X mk bits

(3,1) 4 X 4 bits 64 X 2 bits

(7,3) 512 X 12 bits >106 X 9 bits

(7,5) >104 X 6 bits >106 X 15 bits

(15,9) >1010 X 24 bits >1018 X 36 bits

(255,223) >1069 X 256 bits >I0 _ X 1,784 bits

The decoding hardware could simply be a combinational logic circuit

as in figure B-I. The S i are an EXCLUSIVE-OR (XOR or SUM or Z)

function of R(X), the x i and the Yi are an AND function of the Si,

the E(X)' is simply the x i and the Yi with zero padding, and then

finally C(X)' = R(X)+E(X)'. But for large codes with a lot of

error correction capability, this circuit is also not practical.

n

R(X) --/
R i

AND

(n-k)/2

--/-->

x i

(n-k)/2

--/-->

Yi

>

ZERO

PAD

n

E i'

XOR

n

--/--> c (x)'
C i'

Figure B-I. - Combinational RS decoding circuit.
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RS decoders are very complex compared to RS encoders. RS decoder

circuits usually employ dedicated processors using parallel

processing techniques. Low data rate decoders, especially post

processing designs, can be done using sequential techniques. High

data rate, real-time RS decoders usually require parallel

processing designs. Since most decoding applications are ones with

continuous inputs, often pipelining (a form of parallel processing)

is easily applied to the sequential stages of RS decoding. If the

stages themselves can be partitioned into more of a parallel

processing architecture, then even higher data rates along with

lower decoder processing delay can be obtained without

interleaving. The following sections concentrate on some general

design considerations for dedicated and pipelined architectures.

B.I BCH SHIFT REGISTER SYNDROME CIRCUITS

The SRC to calculate the syndrome s(X) = s2t.IXZt'1 + ... + siX + so

can be as simple as one of the previous encoder circuits with the

input being R(X) instead of M(X). The syndrome components S i are

then found as S+ = s(_ i) by additional circuitry.

< I I

g, I I

I > I

INPUT = R(X)
I

Figure B.1-1. - Syndrome SRC using s(X) = R(X) mod g(X).

We can also send the R(X) into the front of the circuit, but with

S(X)regi=ter = s(X) [(n-k)=hift]
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I °
T

L__ INPUT = R(X)

I

gn-k-1 I

I

Figure B.I-2. - Another syndrome SRC using s(X) = R(X) rood g(X).

S i can also be found directly after R(X) has been completely

clocked through the following SRC. This SRC also demonstrates that

dividing a polynomial by (X+a i) is the same as evaluating it at _i;

Si=R(_i).

R(X) -->

Figure B.I-3. - Syndrome SRC using S i = R(_i).

B.2 GENERAL HARDWARE CIRCUITS FOR ai'_ j = a K

Instead of calculating the remaining decoding steps using only a

microcomputer and software, one should consider designing the

decoder using more pure hardware, i.e., ROM's, SRC's, XOR gates,

AND gates, programmable gate arrays, microslice processors, etc.

ui + aj = aK: We already know from sections 1.3.1 and 1.4.5 that

addition can be performed using m XOR gates on a tuple-by-tuple

basis.

ac_t,ntaj = uK: We can multiply by a single constant a c_t'nt by using

m XOR trees. These trees are also designed on a tuple-by-tuple

basis using such design tools as Karnaugh maps.

aia j = aK: We can multiply any two field symbols together by

multiplying and then reducing both the ui and _J polynomials'
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representations together using algebra. Then, we can build the

hardware using just XOR and AND gates for each binary tuple. That

is, let a _ = i3a3 + i2a2 + ila + i 0 for i] = either 0 or 1 and

j = 0,1,2,...,m-1. Let a j be likewise defined. Then, the

following relationship occurs using the F(X) and a(X) that we used

in our (15,9) RS example.

O_ia] = Oci+J =
[ (i0J3+i,j 2+i3J 1+i3J0 )+i3J 3]a 3

+ [ (ioJ2+ilJ1+i2Jo)+i3J3+(i3J2+i2J3) ]a 2

+ [ (ioJ1+ilJo)+(i3J2+i2J3)+(ilJ3+i2J2+i3Jl) ]a

+ [ (ioJo)+(ilJ3+i2J2+i3J,) ]

aia j = aK: We can multiply any two field symbols a i and a j together

by using two m-by-m ROM tables to find the logarithms of a | and a ]

which are i and j. Then, we can use an end-around carry adder to

ADD and reduce i and j modulo n. After this, use another

m-by-m ROM table to take the antilog of K=i+j to determine a K = a i÷].

In this circuit neither input can be 0=a'®; however, this can be

designed around.

aia j = a_: Multiplying a i by a ] can also be performed in a manner

similar to dividing one symbol using its polynomial representation

by the other symbol's polynomial representation. This circuit is

similar to the encoding circuits, but use F(X) to determine the

taps of the SRC. Load the SRC with a j, clock i times to multiply

by a ! (i_l), and the result is in the SRC. Each clock of this SRC

is equivalent to counting through the field, i.e., l,a,a2,...,a "'I,

l,a, a2,...,a t. Another SRC which counts by alpha (equivalently

multiplies by alpha) is a m-bit parallel clocked shift register

with its output multiplied by alpha; use any previous circuit to do

the multiplication. Then, after the multiplication, send its

output to the shift register's input. The result a _ could then be

stored in the SRC if desired.

a ] / a i = aK: Division between two field symbols a i and a J can be

done by taking the denominator a i and sending it through a 2"-by-m

ROM. This determines its inverse a "i. Then, a j / a i - a _ can be

found by multiplying a "i and a J together using any valid

multiplication design. The denominator input cannot be zero.

a ] / a ! = aK: Division can also be done by subtracting logarithms.

We can divide any two field symbols a ! and a J (except a'=0) together

by using two m-by-m ROM tables to find the logarithms of a i and a J

which are i and j. Then, we can use an end-around carry adder to

SUBTRACT and reduce i and j modulo n. After this, use another

m-by-m ROM table to take the antilog of K=j-i to determine a _ = a ]'i.
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B. 3 DIRECT METHOD HARDWARE FOR a (X)

The direct method requires fewer calculations than the iterative

method for T = 0,1,2,3, and maybe 4 error symbols. So we may want

to have our hardware solve for a(X) using the direct method for

when a few error symbols are thought to have occurred. When a lot

of errors are thought to have occurred we should possibly use some

other method applied into hardware. Also a hardware system might

run different algorithms simultaneously and the first one done

passes its a(X) solution to the next decoding stage; this does not

seem synchronous and efficient.

B.3.1 Previously Calculated Determinants

In section 4.3.2, we start out trying to solve a t-by-t matrix.

If DET ISal, = 0, then we keep trying the next smaller matrix until

DET ISali for i<t is not zero; the largest non-zero determinant

determines how many errors is thought to have taken place (i.e.,

determines T). It should be noted that once the determinant of a

t-by-t matrix has been calculated, it is possible for all the

remaining determinants for the i-by-i matrix, i<t, to also have

been partly calculated. Thus, these results should be placed in a

temporary memory location and the hardware may be able to save time

or amount of hardware not recalculating terms of the smaller

determinants. Using the familiar (15,9) RS example (section

4.3.2), let T=2. Then, instead of choosing the first two equations

as in section 4.3.2, we will choose either the middle two or the

last two equations from the following:

$102 + SZO'1 = S3

SzO'z + $301 - S4

$30" 2 + $40" 1 = S 5

S4a 2 + $50" 1 = S6

Wo get either set of these equations:

$202 + $301 = S&

S3G 2 + $401 = S5

$30 z + $401 = S 5

S&o 2 + $501 = S 6

The corresponding matrices are ISa Iz,3 and I$013,4.

S z S_ IIsa12.3= ] s3 s, $3 $4 1Iso13. = s,

The determinants of these matrices have already been calculated and

stored into memory at the time when the determinant of the

t-by-t matrix was calculated. Let us show this. When T=t=3,
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we get some equations.

S103 + S2G 2 + S3a I = S 4

S2a 3 + S3a 2 + S4o I = S 5

S3G 3 + S4a 2 + Ssa I = S 6

Let ISolt

S I S 2 S 3

S 2 S3 S 4

S 3 S4 S 5

The corresponding determinant is DET ISolt.

DZT Isol,
I $I S z S 3= DET S 2 S3 S 4

S 3 S4 S s

Let us calculate this by arbitrarily taking the determinant across
the first row.

Sz $3 ISz $4 I +$3 $4 I +

I $2 S4
DET ISalt = S, DET ISa1304 + S z DET S3 S 5 + S 3 DET ISalz,3

Notice that DET IS°13,4 and DET ISOlz3 was calculated when DET ISolt
was calculated. Therefore, it is s_own that some determinants of

a smaller matrix can be calculated if the determinant of its larger
matrix has been calculated.

There exists one way to calculate DET ISult to be able to include

all the four equations (i.e., the S3,S4,Ss, and S 6 equations in the
beginning of this section), but not all the combinations of them.

Let us show this by continuing this example. Calculate DET ISolt
by starting at the second row instead of the first.

I Sz $3 $1 $3 i I $1 SzDET IS°It = S z DET S 4 S 5 + S 3 DET S3 S 5 + S4 DET S3 S 4

DET Isol, = s2DET ISoI=,4+ s3DET $I $3 1
S3 S 5 + S4 DET IS011,3

Therefore, to save time and/or other resources by not recalculating

all the determinants' terms, select the particular equations which

correspond to how the DET ISalt is calculated. Designing how this

is calculated might come in handy when designing the hardware. If

it's easy to implement, try not to recalculate something unless you
need to.
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B.3.2 Reduced G(X) Computations

There is a shortened method to solve the set of equations for G(X).

Let us use the direct method in section 4.3.2, but reduce the

number of multiplies, divides, and adds. Follow the following

example which is similar to the (15,9) RS example with T=t=3.

ISoJt =

Sl S2 S3 1

S 2 S 3 S4 I
S3 S_ Ss

DET JSGIt = SI[$3S5 +($4)2]+S 2[$2S5+S3S 4]+S 3[$2S_ +($3)2]

= SlS3Ss+S I(S4) 2+ (S2) 2Ss+S2S3S4+S2S3S_ + (S3) 3

And now notice that we can save 4 multiplies and 2 adds by noticing
that _i+ai=0 in modulo-2 math.

DET JSolt = SIS3S5+$I($4)2+($2)2S5 +($3)3

01 = (DET Isol,) 1 DET
S 1 S 2 S 4

S2 S 3 S s

S 3 S4 S 6

01 = (DET I So I t) -1 [$1S3S6+$1S4S5 + (Sz) 2S6+SzS3Ss+S2 ($4) 2+ ($3) 2Sz.]

Well, no terms dropped out here. Similarly, 0 z is found.

0 z = (DET ISo It) -I[S I($5) 2+$IS4S6+SzS;$5+S 3 ($4) 2+$2S3S6+ ($3) 2Ss ]

Well, no terms dropped out here either.

terms dropping out, 03 is found.

Similarly, but with two

o 3 = (DET ISo [t) -I[S3S4S5+ (S4) 3+S 2 ($5) 2+S2S4S6+S3S_S5 + (S3) 2S6 ]

= (DET ISo It)'1 [ (S_)3+S z(S5)z+SzS4S6+ ($3)2S6]

This circuit requires 40 multiplies, 3 divisions, and 16 adds to

solve for o(x) or or(X ) when T=t in a (15,9) RS code using Cramer's

rule. If we care to do more algebra, we can find that we can

reduce the number of multiplies, divides, and adds even further.

B.4 HIGH DATA RATE RS DECODING DESIGN

There are real-time processing decoders and there are post

processing decoders. Post processing RS decoders are ones which

possess an increasing decoding delay as the number of errors to

correct increases. Typical post processing RS decoders are

software programs executed on most any type of computer.
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Post processing hardware are rarely designed for real-time systems.

This is because these systems introduce buffer overflow conditions

(or possible loss of data) and adds to the overall decoding delay

and complexity of the system. Real-time systems almost always use

real-time decoders. Real-time decoders have a fixed decoding delay

which is usually small and is independent of the number of errors

to correct.

Real-time RS decoders usually take advantage of the pipelined

nature of the decoding stages so that high data rates can often be

accommodated without being forced to use interleaving techniques.

If we do not take advantage of these major partitions, we must wait

longer before we can start decoding another received word; if there

are long time periods between each received word, then the overall

data rate decreases. Pipelining techniques are often used to

design high data rate RS decoders which are often found in real-

time systems. Pipelining is partitioning a sequential process into

many smaller processes such that dedicated circuits efficiently and

simultaneously work these smaller processes in a sequential manner.

High data rate designs are similar to figure B.4-2 while low data

rate ones are similar to figure B.4-1.

R(X) -->

input

register

or

input
buffer

_>

a single,

sequential

processing
circuit

which

calculates

the Si,

the al,

the zi,

the x i,

the Yi,
and

the C|'.

-->

output

register

or

output
buffer

--> C(X) '

Figure B.4-1. - Low data rate RS single processor decoder.
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R(X) >

>

Ci i

--> C(X) '

Figure B.4-2. - High data rate RS pipelined decoder.

If we have a low data rate RS decoder, then we might design one

encompassing processing circuit. This circuit would be responsible

for calculating the Si, ai, zi, xi, Yi, and C i' for R(X) before it

would accept another R(X) to be decoded. This single circuit might

be a general purpose microprocessor or a microslice processor or

comprised of many commercially available discrete parts or maybe

even some type of computer executing some type of software.

Figure B.4-1 demonstrates the single processor design. For a real-

time system, the input register must be at least as large as the

certain constant number of clock cycles required to calculate the

S i, a i, zi, x|, Yl, and C i' for the largest number of errors to

decode. Low data rate, real-time decoders also have larger input

registers than their high data rate, pipeline counterparts. For a

real-time system, the output register will contain the decoded code

word C(X)'. Due to the decoder delay, the registered output is

synchronously bursty, i.e., there are long time periods between

decoded code words. If it is desired to have a continuous output

data rate, then we can smooth the output either by designing a more

complex output register or by synonymously using a small first in,

first out (FIFO) memory circuit.

If we have a high data rate RS decoder, then we would probably

design a processing circuit with multiple processors. Each

processor would only work on a separate portion of the overall

process. Pipelining speeds up the process along with smaller input

registers and decreasing decoder delay. One processor would be

efficiently designed to specifically calculate the Si, another for

the a_, and others for the zi, xl, Yl, and Ci'. This pipeline

process allows, for example, the new S| to be calculated

simultaneously while the o i from the old S| are being calculated.

These multiple processors might be SRC's, dedicated hardware, or

commercially available processors. Figure B.4-2 demonstrates this

multiple processing (really parallel processing) circuit. For a

real-time system, a pipeline design can be designed without an
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output register; if the parity-check symbols are not output [i.e.,

only the message symbols (and possibly a decoder status word) are

output] and a continuous output data rate is not required, then an

output register is not needed to smooth the output. Real-time

processing RS decoders usually require registers (i.e., small time

delays before some pipelined circuits) while post processing RS

decoders usually require buffers and/or files.

A typical pipelined, high data rate decoder often uses SRC's to

implement each stage. The SRC to calculate the S i can be almost

the same as the encoder circuit (see section B.I). The SRC to

calculate the a i is often patterned after Berlekamp's iterative

algorithm and Euclidean greatest common divisor algorithm. The a i

determination is the most complicated and usually requires the most

processing time. Therefore, it is the data rate limiter of most

systems. The z i values can be calculated quickly using a SRC and

using the Chien search with a parallel format implementation. If

the a i SRC requires more processing time than a z i SRC implemented

in a sequential format, then a sequential zi SRC (rather than one

in a parallel format) might be used to save size, weight, and

power. The x i circuit can be simplified slightly by letting the

primitive element a a used in the code word generator be as=_ I. The

Yi circuit should be designed to require less processing time than

the limiting process (which is often the 0 4 circuit). The final

SRC is the C i' circuit which is nothing more than a time delayed

version of the received symbols R! shifted out after some of the R i

have been added to the Yl at the x i.

The partitioning between the stages is illustrated in figure B.4-2.

For some of the stages, it is possible to start the process of

calculating its set of values when the previous stage has not yet

completely calculated all of its values. For example, it is

possible for the C|' circuit to start to output the decoded code

word symbols C i' at the time when the most significant error

location x, and the associated error value YT had been calculated

AND still maintained a continuous output. A correctly just-in-time

architecture should add to the degree of pipelined (or parallel)

processing.

Besides the previous discussions of stage partitioning,

partitioning of the stages themselves are possible. Hypersystolic

array designs are examples of this. These hypersystolic array

designs partition the processing of each stage into many cells (or

computational units) which add to the degree of parallel

processing; therefore, even higher data rates along with less

decoder delay results. See "Hypersystolic Reed-Solomon Decoder

Final Report" within the references section.

For a high data rate (real-time) system, a pipelined design that is
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globally synchronous may be preferred. For an ultra high data rate

(real-time) system, a design with even more parallel processing

that is globally asynchronous, but locally synchronous, e.g., the

hypersystolic designs, may be preferred. Low data rate systems

might be designed using a SRC, a general purpose processor, or by

running some high level (or low level) computer language program on

any available computer. High data rate systems usually demand some

type of parallel processing implemented directly into a SRC.
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APPENDIX C

MATRICES AND RS CODING

People sometimes prefer to work with matrices to reduce the

algebraic load. Using matrices can come in handy when developing

software and possibly hardware. I sometimes prefer matrices

because it's sometimes easier to see how the code is working.

C.l RS ENCODING USING MATRICES

Start off with the generator matrix g. g is a k-by-n matrix gk-_-n"

In RS coding it must be constructed directly from the generator

polynomial g(X) = X6+a1°XS+_14_+_X3+o6X2+o9X+56. To simplify the

notation, let -_ = 0, 0 = I, 1 = 5, 2 = 52 , ..., n-i = o n'1.

Therefore, g(X) = [6 9 6 4 14 I0 0]. Notice that since we are

working with matrices, I decided to use the mathematical convention

of writing in increasing order of magnitude, i.e.,

g(X) = [go gl "'" gn-k] and not g(X) = [gn-k gn-k-1 "'" go]" The

non-systematic generator matrix g_-,m,k-_-n = g_-sys is obtained from
the generator g(X) = [6 9 6 4 14 i0 0].

g_-sys =

6 9 6 4 14 I0 0 -_ -_ -_o -_o -_ -_ -oo -oo

-_o 6 9 6 4 14 I0 0 -_ -_o -oo -_o -_o -oo -ao

-_ -oo 6 9 6 4 14 I0 0 -oo -_ -oo -oo -oo -oo

-_-oo-oo 6 9 6 4 14 I0 0-oo-oo-oo-oo-oo

-oo -oo -oo -oo 6 9 6 4 14 i0 0 -oo -oo -oo -oo

-oo -_o -oo -oo -oo 6 9 6 4 14 I0 0 -oo -oo -oo

-oo -oo -oo -oo -oo -oo 6 9 6 4 14 I0 0 -oo -oo

-oo -oo -oo -oo -oo -oo -oo 6 9 6 4 14 i0 0 -oo

-Qo -oo -oo -_o -_ -oo -_o -oo 6 9 6 4 14 i0 0

The systematic generator matrix gsy, is directly constructed from

the non-systematic generator matrix g_-s_ by standard matrix row
operations; one row multiplied by a | and then added to another row

and the result replacing the row added to. To acquire the

systematic form, we want a k-by-(n-k) Parity matrix Pk-_-(n-k) joined

with the k-by-k identity matrix Ik, i.e., gs_,k-_-k = [Pk-_-(n-k) Ik]"

In other words, transform the g_-s_ into the gs_ shown below.

_..__..]NTEN]iOfl ALLY BLANtl
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gsys _--"

6 9 6

1 12 3

3 Ii I0

7 12 8

14 12 5

4 14 12

7 6

2 13

--OO -_O

This is clearly of the form gsys,k-by-k = [Pk-_-(n-k) Ik] where

Pk-loy-(n-k)is :

Pk-by- (n-k) =

6 9 6

1 12 3

3 ii i0

7 12 8

14 12 5

4 14 12

7 6

2 13

--aO --00

4 14 I0

8 14 12

9 7 1

0 7 8

0 9 4

1 9 9

4 14 Ii 4

0 3 4 I0

8 1 4 3

and where the identity matrix I k is:

Ik =

Performing matrix row operations within a finite field is the same

as we usually perform matrix row operations within a infinite

field. However, we use the addition and multiplication methods for

finite fields, not infinite fields. Let us work an example of

calculating the first two rows of the g._ presented previously. We

first start at the first row of g_.,m, denoted g_-,_,r_0" From the

previous g_.,_ we obtain the following:

gr_-sys,rowO " [ 6 9 6 4 14 I0 0 -_ -_ -_ -_ -_ -_ -_ -_ ]
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Therefore, the coefficients of "row0" are:

gnon-sys,rowO,O = 6

gnon-sys,rowO,1 = 9

gnon-sys,rowO,2 = 6
etc.

g_n-sys,row0,n-k-1 = gnon-sys,row0,5= I0

gr_on-sys,rowO,n-k = gnon-sys,rowO,6 = 0

gnon-sys,rowO,n-k+l ---- gnon-sys,rowO,7 = --m
etc.

gnon-sys,rowO,n-1 = gnon-sys,rowO,14 = --m

Now the first row, denoted row0, is the same for both the

systematic and non-systematic generators because

gnon-sys,row0,n-k= gnon-sys,row0,6 = _0 = 1 and gnon-sys,row0,i = _'" = 0 for

i = n-k+l, n-k+2, . . . , n-I = 7,8, . . . ,14. Therefore,

gsys,rowO = gnon-sys,rowO = [6 9 6 4 14 10 0 -m -¢o -oo -oo -¢o -Qo -m -oo].

To find the second row of gsys' denoted gsys,rowl' we do standard
matrix row operations.

gsys,rowl = gnon-sys,rowO,n-k-lgnon-sys,rouO + gnon-sys,rowl
= i0[ 6 9 6 4 14 i0 0 -m --m -m --m --m -m --m -m ]

+ gnon-sys, row1
= [ 16 19 16 14 24 20 i0 -m -m -m -m -m -m -m -m ]

+ gnon-sys, row1
= [ 1 4 1 14 9 5 I0 _ _ -m -_0 -m _ -m -_0 ]

+ gnon-sys, row1
= [ 1 4 1 14 9 5 i0 -_o -_ -_ -m -_ -_ -_ -m ]

+ [ -_ 6 9 6 4 14 i0 0 -_o -_ -_ -m -m -_ -m ]

= [ (l+-m) (4+6) (1+9) (14+6) (9+4) (s+14) (10+10) (-_+0)
(_-m) (-_+-m) (-_+-m) (-=+-m) (-_+-m) (-_+-_) (-_+_) ]

= [ (1) (12) (3) (8) (14) (12) (-m) (0) (-m) (-_o) (-m)

(-_) (-=) (_) C-m) ]
= [I 12 3 8 14 12 -_o 0 -m -_ -m -m -m -_ -co]

The result is the ith row of g.sys, denoted g ., = 0sys,rowl when gsys,roui,n-k+i

and gsys_r_i,j = _ for ] = n-k, n-k+l,..., n-k+i-i and for
j = n-k+l+l,n-k+i+2,... ,n-l. The result that we have just

obtained, is the second row denoted g,_,r_1" This is because

gsys0r_1,7 a° 1 and gsm,r_1,j = = 0 for j = 6 and for

j = 8,9,..., 14. It should be noted that more and more iterations

of the previous procedure are needed to obtain gs_,r_i for i

increasing.

The parity-check polynomial h(X) = Xn+I / g(X) has a corresponding

parity-check matrix h(n.k)._. 9. h can be either systematic or
non-systematic, but must be In accordance with its partner g; just

as h(X) is related to g(X), h must somehow also be related to g.
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h_,.$_ can be found from h(X) = [h 0 hI ... htut.t_te ] in the same
manner that g can be found from g(X) = [go gl -'- g2t]" Once either
g or h is found the other is specified; gk-_-k = [Pk-_-(n-k) Ik] and

T] where T is the transpose of Pk-_-(,-k)"h(n-k)-by-n = [In-k Pk-by-(n-k) Pk-by-(n-k)

The message M can be encoded directly into the code word C using g;

CI.b7.n = M1.bT.kgk.by.(n.k) Use the (15,9) RS example to demonstrate
this. From chapter 4, M = [-_ 11 -_ -m -_ -_ -_ -_ -_].

Cs_ = Mgsy s = [-_ ii -_ -_ -_ -_ -_ -_ -_]gsy,

g,_ = g,_tmtic was previously calculated within this appendix. Once

this matrix calculation is completed, then Csy, is generated.

Cs_ = [12 8 14 4 I0 8 -_ ii -w -_o -_ -m -_ -m -_]

This result checks with the results obtained in chapter 4;

C(X) = a11X7 + _SXS+_1°X4+a4X_+a14XZ+aSX+a Iz.

C.2 RS DECODING USING MATRICES

The syndrome s can be calculated directly from the received word R

using h T.

Sl.by.(n.k) = Rl.lw.nhn.lw.(n.k) T

To find the errors and their values notice that

C. L + E.- where E is the error word. NowRl-lw-n = 1-_,-n ]-w-n

s = Rh T = [C+E]h T = ChT+Eh T. It is a fact that s=chT=0 because h is

the parity-check of C. Therefore, s - chT+Eh T = Eh T. THEREFORE,

THE SYNDROME IS A FUNCTION ONLY OF THE ERROR PATTERN (OR WORD) AND

NOT THE RECEIVED WORD'

Wait a second, s=RhT=EhT; but this does not mean R=E. So, in our

calculations, we determine the value of the syndrome s by s=Rh T and

then find E with the fewest non-zero m-tuples such that s=Eh T.

This fewest number of errors idea should be familiar to us by now;

it is MLD. The problem is to come up with an efficient algorithm

which determines this E. We could start with no errors (T=0) and

if s=Rht-O, then no errors occurred.

But what if one error symbol occurred? Then,

s=RhT=[srcR srm+1 ... SFm÷n.k.1] # 0 where si are the coefficients of

s(X). So we need to start calculating s=Eh T for each n z single,

non-zero error symbol possibilities of E until we get this

particular value of s. Notice the worst case condition is
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performing the calculations for all the n 2 possibilities or storing

all n _ possibilities in a table.

But what if two error symbols occurred? Then if S_0, the n 2 single

error symbol possibilities in s=Eh T would not equal s=Rh T. So then

we try all the (n4-n3)/2 possibilities approximately n 4 double,

non-zero error symbol possibilities. One and only one solution of

E exists with the fewest number of error symbols. If there is no

solution, then we need to keep calculating s=Eh T for more and more

errors (TSt) until a solution is reached. You can imagine the

number of calculations which are needed to be performed if we have

a lot of errors. That is why iterative algorithms are very

popular. The number of possible combinations of T, non-zero error

symbols is:

(") (_-i) T
T

= (n.'/(T! (n-T)!)) (P_-I) T

Even super computing usually cannot determine all of these possible

combinations to store into huge tables which are impractical.

Continuously calculating s=Eh T for arbitrary error patterns until

a solution is obtained is also usually impractical. However, we

can check our results from the previous chapters. Let us calculate

s=Rh T which should equal s=EhT; denote s=Rh T as s_=Rh T and s=Eh T as

SE=Eh T. The received word from chapter 4 is R = [12 8 3 4 i0 8 -m

ii 0 -m -m -m -m -_ -m].

S R : Rh T

= [12 8 3 4 l0 8 -m II 0 -_ -m _ --m -_ -_]h T

= T]Let us find h T. h = h,_ [I,-k Pk-by-(n-_)

0 -m -_ -_ -_o -_ 6 1 3 7 14 4 7 2 -_

-m 0 -_ -_ -_ -_ 9 12 Ii 12 12 14 6 13 -_

-m 0 -_ -_ -_o 6 3 I0 8 5 12 4 0 8

-_ -_ -m 0 -_ --co 4 8 9 0 0 i 14 3 1

-_ -_ -_ -_ 0 -_o 14 14 7 7 9 9 II 4 4

-_ -_ -co -_ -co 0 I0 12 1 8 4 9 4 i0 3

And therefore, h; = h s T. It should be noted that the minimum

distance d.i" is the smallest number of columns of h (or rows of h T)

that sum to zero; this is a linear block code corollary and thus

also works for RS codes. Notice that in this example, _|, = 2t+l

should be seven symbols. There are only n-k=6 rows of hs_ and

because of the identity matrix, no six or fewer unique rows add to

zero. Therefore, this only shows us that d=i. > 6 and it is; d.i,=7.

This fact should serve as a good check for a valid h (and thus g).

Getting back to this example, h T = h,m T.
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hT -_

0 --oo _ -oo -40 -Go

-_ -w _ 0 -ao -co

-_ -_ -_ -_ -_ 0

6 9 6

1 12 3

3 Ii I0

7 12 8

14 12 5

4 14 12

7 6

2 13

-oo

4 14 I0

8 14 12

9 7 1

0 7 8

0 9 4

1 9 9

4 14 II 4

0 3 4 i0

8 1 4 3

So get back to s R

S R = Rh T

= [12 8 3 4 10 8 -oo 11 0 -<o -oo -oo -oo -oo-oo]h T

= [3 ii 5 9 7 i]

= [s o s 1 s 2 s z s 4 s s]

Therefore, s_=a 3, s1=a 11, s2=a s, s3=a 9, s4=a 7, and ss=a; s(X) = R(X) mod

g(X) - s2t.lX_t'1+...+slX+s o. Now let us check our error pattern

decoded in chapter 4. The error word from chapter 4 is

E = [-_ -_ 0 -_ -_ -_ -_ -_ 0 -_ -_ -_ -_ -_ -_]. Let us calculate

s E - Eh T and make sure sR=s E.

s E = Eh T

= C-ao -o0 0 -¢o -_ -Go -_ -oo 0 -¢o -_o -_o -oo -_o -_]h T

= [3 Ii 5 9 7 I]

Now does s E = sR = [s o s I s 2 s3 s4 ss ] = [3 11 5 9 7 1]?
are both the same!!!

Yes, they

Great! Syndrome calculations can also be done using matrices;

sometimes matrices are easier to work with. But to be more sure of

having calculated the g and h matrices correctly, let us calculate

the syndrome components S! and verify them; S i - s(a|).

2t'1
s(X) = Z siXi

s(X) - s o + siX + szX2 + ... + sn.lX zt-1

m S0 + Sl x + S2 x2 + s3X3 + S&_ + s5x5

-- (Z3 + (xll X + a5X 2 + agx 3 + (xTx 4 + aX 5
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S I = s(a) = 3+11"1+5"2+9"3+7"4 +1"5 = 0

S 2 = s(_ 2) = 3+11"2+5"4+9"6+7"8 +i'i0 = 0

S 3 = s(a 3) = 3+11"3+5"6+9 "9+7"12+1"15 = 5

S 4 = s(_4) = 0

SS : (as) -_
S6 (a 6) i0

Therefore, S1=a°=l.

Therefore, $2=_°=I.

Therefore, $3=_5.

Therefore, $4=_°=I.

Therefore, $5=_'®=0.

Therefore, S6=_I0.

These results agree with the ones in chapter 4. Also, the S i can

be represented as S i = [SFCR SFCR÷I • • • S2t÷FCR.I] ; e.g. ,

S i = [S I S 2 S3 S& S 5 S6] = [i 1 a5 1 0 a lu] = [0 0 5 0 -_ i0].

Now decode the message!

Csys' = R + E

= [12 8 3 4 I0 8 -_ ii 0 -_ -_ -_ -_ -_ -_]

+[-_ -_ 0 -_ -_ -_ -_ -_ 0 -_ -_ -_ -_ -_ -_]

= [12 8 (3+0) 4 i0 8 -_ ii (0+0) -_ -_ -_ -_ -_ -_]

= [12 8 14 4 I0 8 -_ ii -_ -_ -_ -_ -_ -_ -_]

= [CK1.by.(n.k)'M1.by. k ' ]

C,_' should equal Cs_. In fact, it does if TSt. Anyway, our

estimate of the message M' is extracted from

C' = [12 8 14 4 i0 8 -_ ii -_ -_ -_ -_ -m -_ -_]. From chapter 4,

M = [-_ Ii -_ -_ -_ -_ -_ -_ -_] which agrees with the decoded

message M' = [-_ ii -_ -_ -m -m -m -_ -_]. Again from chapter 4,

CK = [12 8 14 4 i0 8] which also agrees with the decoded

parity-check CK' = [12 8 14 4 i0 8]. Therefore, we can do these

operations in matrix form if we desire to.
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APPENDIX D

A GENERAL MATHEMATICAL OVERVIEW OF RS CODING

This appendix assumes some understanding of the terminology and

relates to primitive (n,k) RS codes over GF(2 m) in a non-erasure

system.

The general form of the code word generator g(X) is:

_÷FCR(-½+g(X) = (at.)i)
i=FCR

The roots of the code word generator g(X) are consecutive powers of

any primitive element a G of GF(2 m) which can be different than the

primitive element a(X)=a used in generating the field with the

field generator F(X). The first consecutive root (FCR) is an

integer. A code word C(X) is comprised of a message word M(X)

annexed with a parity-check word CK(X). If the message word code

symbols M i (of the form o J) are unaltered and are appropriately

placed inside a C(X), then the C(X) is said to be systematic. To

be non-systematic, a code word is often of the form C(X)_n.,.st_tic =

M(X)g(X). To be systematic, a code word is often of t_e form

C(X)syst_tic = xn'kM(x) + CK(X) = (km'kM(x)) + (xn'kM(x)) rood g(X). We
transmit or record code words.

We receive or play back received words. We know that a received

word R(X) may not be a C(X), i.e., we know errors within R(X) are

possible. We need to determine which symbols, if any, within R(X)

are in error, i.e., we need to determine the error-locations x i of

the form X j (or the error-location numbers z i of the form oJ). But

wait a minute. RS codes have code symbols from GF(q)=GF(P m) not

GF(P); RS codes are q-ary BCH codes and are not P-ary [e.g., 2-ary

(or simply binary)] BCH codes. Therefore, we also need to

determine the error values Yl of the form a j.

We know something about the coding system; we know g(X), m, n, and

R(X). We assume that the number of error symbols T is less than or

equal to the error correction capability t. The purpose of error

correction decoding is to find and correct the errors. Assume an

error-locator polynomial o(X) as a function of the error-location

numbers zi; o(X) is a function of the error-locations x i because the

x i are a function of the zi and the code word generator's primitive

element a s. How do we get o(X) from R(X)? We know if o 6 is the

code word generator's primitive element and that a G may not

necessarily be the special case of oc=a(X)=u, then we should denote

S i = R(_ I) = s(a x) for ul = (oj)i = aji, for i=FCR,FCR+I,...,2t+FCR-I,
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and for s(X) = R(X) rood g(X) or s(X) from s = Rh T. If FCR just so

happens to be 1 and c just so happens to be _I=_, then

S i = R(_ i) = s(_ i) for i=1,2,...,2t and the x_ are simply the zi, but

in the X s_-_'r form as opposed to the a s_-_'r form. IN SUMMARY,

THE FIRST DECODING STEP IS TO CALCULATE THE 2t SYNDROME COMPONENTS.

We also know that S i = R(u x) = C(_ x) + E(_ I) = E(_X); the syndrome

components S i are a function of the error pattern. Therefore, the

next step in determining how a(X) is calculated from R(X) is to

link the syndrome components S i to the error-locator polynomial

a(x)

Assume an error-location polynomial a(X) as a function of the

error-location numbers z i which are in turn a function of the

error-locations x_:

o(X) = (l+ziX) (I+z2X)...(I+ZTX) = 1 + o1X + ... + aTXT

Then the reciprocal of a(X) is:

ar(X ) = (X+zl)(X+z z)-..(x+z T) = XT + olXT'I + ... + aHX + oT

Therefore:

XT + oixT-I + ... + oT.IX + oT = (X+zl)(X+zz)...(X+z T)

Notice that Or(X)=O for X=Zl,Zz,...,z T.

We need [jzj i on the left side of the previous equation. Why or how

was yjzj chosen? Well, we know Si=E(a I) for i=FCR,FCR+I,...,

2t+FCR-I and for a r"being a primitive element of the GF(16). If

T < t error symbols have occurred, we know that the actual error

pattern E(X) is of the form E(X) - ylXjl + yzX j2 + ... + yTXJT for JK,

K=I,2,...T. Therefore, since Si=E(a l) for i=FCR,FCR+I,...,2t+FCR-1,

we obtain S i = YlZl i + y2z2i+ ... + y, ZT | for i=FCR,FCR+I,... ,2t+FCR-I.

The error-location numbers zi are of the form z| = (aG) jK [where _j_
is from E(X)]; if a:" just so happened to be a1=_, then z i =

[where JK is from E(X)] and x! - X jK [where JK is from E(X)].

S| = ylzl | + y2zzi+ ... + yTZ, i for i=FCR,FCR+I,... ,2t+FCR-I ARE KNOWN

AS THE WEIGHTED POWER-SUM SYMMETRIC FUNCTIONS. Since the S i are of

the NON-LINEAR form ylzl i + yzzz|+ . .. + yTZT i, we need the NON-LINEAR
i

form yjzj .

Getting back to finding the link between o(X) and the syndrome,

multiply the previous o(X) equation by y,z, i on both sides. The

result is the following equivalent equati6_:

yjzji(X T + oi XT-I +...+ OT.IX + OT) = yjzji((X+Zl ) (X+z2)-. (X+z T))
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Now substitute X=zj into the previous equation and remember that

ar(X)=O for X = Zl,Z2,...,ZT_ I, or ZT.

yjzji(zj T + OlZjT'I + ... + OT.IZ j + OT) = 0 for j=I,2,...,T

Simplify the previous equation for j=I,2,...,T [because ar(Zj)=0 for

j=I,2,...,T] to result in:

yjzj i+T + yjzj_'f'lal + . .. + yjZj_'IoT.1 + yjzj'o T = 0

Rearrange the terms of the previous NON-LINEAR equation to obtain

the following:

• " i+T" + " ----0
yjzj'o T + yjZjI+IOT.I + . .. + yjzj 101 yjzj I+T

The previous equation is true for j=I,2,...,T-I, or T. Since all

of the 2t syndrome components S i was shown to be of the form

S i = ylzl i + y2z2i+ ... + YTZT i for i=FCR,FCR+I,...,2t+FCR-I, then the

following LINEAR equation for i=FCR,FCR+I,...,T+FCR-I results:

Sio T + Si+IOT. 1 + •.. + Si+T.IO 1 + Si+ T = 0

The number of independent LINEAR equations for the previous

equation is T and the number of unknowns is also T; therefore, the

a i can be determined from the previous equation.

When T<t errors occur, we obtain additional equations used to solve

for fewer unknowns. This is because we have 2t syndrome components

(not 2T syndrome components) available. Usually the link is

expressed as: Sio T + Si÷IOT.I + ... + Si÷T.IO I + Si÷ T = 0 for

i=FCR,FCR+I,...,2t-T+FCR-I. The link can also be synonymously

expressed as the following set of equations:

SFcRO T + SFCR+IOT. 1 + ... + ST+FCR.101 + ST+FC R = O

SFCR÷IO T "F SFCR+2OT.1 "1" ... "1" ST÷FCR01 + ST+FCR+ 1 = 0

etc.

SZt.T+FCR.IO T + S2t.T+FCROT. 1 + ... + S2t+FCR.201 + SZt+FCR.1 = 0

Sometimes the link is also expressed as S i = Si.TO T + Si.,+1OT.1 + ...

+ Si.la I for i = T+FCR,T+FCR+I,...,2t+FCR-I.

SiO T + Si+IaT.1 + ... + Si÷T.IOI + Si÷ T = 0 for i=FCR,FCR+I,..., 2t-T+FCR-I

IS THE LINK THAT WE ARE SEARCHING FOR; this links the known

S i = SI,Sz,...,S2t to the unknown a(X) = 1 + aIX + ... + aTX T.

We know TSt, but we do not yet know the actual value of T; there

may be many possible solutions of the previous set of LINEAR

equations for T_t. Using maximum likelihood decoding, we will
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choose the value for T to be the least value out of its many

possible values; e.g., if T=t or T=t-i would be able to solve

Sia T + Si÷laT. I + ... + Si÷T.1o I + S_. T = 0 for i=FCR,FCR+I, ...,T+FCR-I

and T=l,2,...,t-2 would not be able to solve it, then we would

simply say that T=t-i errors has occurred. IN SUMMARY, THE SECOND

DECODING STEP IS TO CALCULATE THE ERROR-LOCATOR POLYNOMIAL FROM THE

2t SYNDROME COMPONENTS.

The next step in the decoding process is to correct the errors in

the received word R(X). This final decoding step is performed by

calculating the error-locations xi, the error values Yi, and finally

correcting any correctable error, if any, in R(X).

The inverse of the roots of o(X) [or simply the roots of Or(X ) ] are

the error-location numbers zi! The error-locations x i are related

to the error-location numbers z i and are in the X j form and not the

_J form. x i = X^[(log.zi)/G], e.g., if GF(16), z1=_ 6, and aG=_ 2, then

x I = X^[(log.a6)/2] = X^(6/2) = X^(3) = X3. If u s just so happened

to be _1=u, then x i = X^(log.zi) , e.g., if GF(16) and z1=_ 3 then

x I = X^(logaa 3) = X^(3) = X 3.

After enough error-location numbers z i

location numbers zl) have been calculated, then we can

calculating the error values y! of the form a j. We

S,=S,, S_,. _ and we know z i=z,, z2, . . . ,z, and we
Si = z1"Yl _'-_J2 + "'" + zTIYT for i=FCR, FCR+I,...,2t+FCR-I.

T S t, we have enough LINEAR equations to solve for the Yi"

(also denoted as error-

start

know

know

Since

Therefore, since we found the x i and the Yi, the decoded error E(X)'
is of the form:

E(X)' = YlXl + Y2X2 + ... + YTXT

Therefore, the decoded code word C(X) ' is:

C(X)' = R(X) - E(X)' _ R(X) + E(X)'

IN SUMMARY, THE THIRD AND FINAL DECODING STEP IS TO CORRECT THE

ERRORS IN THE RECEIVED WORD.
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In summary, Reed-Solomon coding is

I. S i from R(X) or from s(X) [s(X) from R(X) and g(X)]

II. a i from S i

III. C(X)' from R(X) + E(X)' = R(X) + ylxl + Y2X2 + ... + yTXT

a. x i from z i (z i from ai)

b. Yi from S i and z i
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